CIESC Journal ›› 2019, Vol. 70 ›› Issue (7): 2426-2438.DOI: 10.11949/0438-1157.20190081
• Reviews and monographs • Previous Articles Next Articles
Liubin SONG(),Peng JIANG,Zhongliang XIAO(),Chengfeng ZHOU,Anxian LI,Zhenzhen CHI
Received:
2019-01-25
Revised:
2019-04-19
Online:
2019-07-05
Published:
2019-07-05
Contact:
Zhongliang XIAO
通讯作者:
肖忠良
作者简介:
宋刘斌(1981—),男,博士,讲师,<email>kjcsongliubin@163.com</email>
基金资助:
CLC Number:
Liubin SONG, Peng JIANG, Zhongliang XIAO, Chengfeng ZHOU, Anxian LI, Zhenzhen CHI. Interface design and properties of core-shell structure cathode materials[J]. CIESC Journal, 2019, 70(7): 2426-2438.
宋刘斌, 蒋鹏, 肖忠良, 周乘风, 黎安娴, 池振振. 核壳结构正极材料界面设计与性能研究[J]. 化工学报, 2019, 70(7): 2426-2438.
1 | FergusJ W. Recent developments in cathode materials for lithium ion batteries[J].Journal of Power Sources, 2010, 195(4): 939-954. |
2 | WhittinghamM S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104(10): 4271-4302. |
3 | LeeJ, UrbanA, LiX, et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries[J]. Science, 2014, 343(6170): 519-522. |
4 | GoodenoughJ B, KimY. Challenges for rechargeable Li battery[J]. Chemistry of Materials, 2009, 22(3): 587-603. |
5 | ParkJ K. Principles and Applications of Lithium Secondary Batteries[M]. New York: John Wiley & Sons, 2012: 12-78. |
6 | AifantisK E, HackneyS A, KumarR V. High Energy Density Lithium Batteries: Materials, Engineering, Applications[M]. New York: John Wiley & Sons, 2010: 7-145. |
7 | PistoiaG. Lithium-Ion Batteries: Advances and Applications[M]. New South Wales: Newnes, 2013:34-214. |
8 | YuanJ, LiuX, ZhangH. Lithium-Ion Batteries: Advanced Materials and Technologies[M].Boca Raton: CRC Press, 2011:11-145. |
9 | YoonS J, ParkK J, LimB B, et al. Improved performances of LiNi0.65Co0.08Mn0.27O2 cathode material with full concentration gradient for Li-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162 (2): A3059-A3063. |
10 | JiangL,YuanX, LiangJ, et al. Nanostructured core-shell electrode materials for electrochemical capacitors[J]. Power Sources, 2016, 9(331): 408-425. |
11 | LiaoJ Y, OhS M, ManthiramA. Core/double-shell type gradient Ni-rich LiNi0.76Co0.10Mn0.14O2 with high capacity and long cycle life for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(37): 24543-24549. |
12 | LuoW, ZhouF, ZhaoX, et al. Synthesis, characterization, and thermal stability of LiNi1/3Mn1/3Co1/3-zMgzO2,LiNi1/3-zMn1/3Co1/3MgzO2, and LiNi1/3Mn1/3-zCO1/3MgzO2[J]. Chemistry of Materials, 2009, 22(3): 1164-1172. |
13 | LuoW, LiX, DahnJ R. Synthesis, characterization, and thermal stability of Li[Ni1/3Mn1/3Co1/3-z(MnMg)z/2]O2[J]. Chemistry of Materials, 2010, 22(17): 5065-5073. |
14 | SongH G, KimJ Y, KimK T, et al. Enhanced electrochemical properties of Li(Ni0.4Co0.3Mn0.3)O2 cathode by surface modification using Li3PO4-based materials[J]. Power Sources, 2011, 196(16): 6847-6855. |
15 | PuX, YuC. Enhanced overcharge performance of nano-LiCoO2 by novel Li3VO4 surface coatings[J]. Nanoscale, 2012, 4(21): 6743-6747. |
16 | LiQ, DangR B, ChenM M, et al. Synthesis method for long cycle life lithium-ion cathode material: nickel-rich core-shell LiNi0.8Co0.1Mn0.1O2[J]. ACS Applied Materials & Interfaces, 2018, 10(21): 17850-17860. |
17 | MyungS T, NohH J, YoonS J, et al. Progress in high-capacity core-shell cathode materials for rechargeable lithium batteries[J]. The Journal of Physical Chemistry Letters, 2014, 5(4): 671-679. |
18 | ZhangJ C, YangZ Z,GaoR, et al. Suppressing the structure deterioration of Ni-rich LiNi0.8Co0.1Mn0.1O2 through atom-scale interfacial integration of self-forming hierarchical spinel layer with Ni gradient concentration[J]. ACS Appl. Mater. Interfaces, 2017, 9(35): 29794–29803. |
19 | LeeY, KimH, YimT, et al. Compositional core-shell design by nickel leaching on the surface of Ni-rich cathode materials for advanced high-energy and safe rechargeable batteries[J]. Journal of Power Sources, 2018, 8(400): 87-95. |
20 | LiuS, FangH, DaiE, et al. Effect of carbon content on properties of LiMn0.8Fe0.19Mg0.01PO4/C composite cathode for lithium ion batteries[J]. Electrochim Acta, 2014, 10(116): 97-102. |
21 | 刘兴亮, 杨茂萍, 汪伟伟. 分级过程对LiFePO4/C电池性能的影响[J]. 电化学, 2017, 23(6): 661-666. |
LiuX L, YangM P, WangW W. Effect of fractionation process on performance of LiFePO4/C battery[J]. Electrochemistry, 2017, 23(6): 661-666. | |
22 | 李宏亮, 毛丽萍, 李世友. 功率LiNi0.5Mn1.5O2正极材料的研究进展[J]. 电源技术, 2018, 42(5): 728-739. |
LiH L, MaoL P, LiS Y. Research progress in power LiNi0.5Mn1.5O2 cathode materials[J]. Power Supply Technology,2018, 42(5): 728-739. | |
23 | 常海霞, 周移, 卢静. Co3O4-Sn复合材料对锂离子电池性能的影响[J].材料导报, 2018, 32(S2): 17-34. |
ChangH X, ZhouY, LuJ. Effect of Co3O4-Sn composite on the performance of lithium ion batteries[J]. Materials Review, 2018, 32(S2): 17-34. | |
24 | YuanW, ZhangH Z, LiuQ, et al. Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries[J]. Electrochim Acta, 2014, 4(135): 199-207. |
25 | JingW, WeiQ L, BiheW, et al. CuO modified LiNi0.5Mn1.5O4 cathode materials for lithium ion batteries[J]. Scientia Sinica Chimica, 2014, 8(44):1332-1339. |
26 | HuangX, QiaoQ, SunY, et al. Preparation and electrochemical characterization of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 coated with LiAlO2[J]. J. Solid State Electrochem, 2014, 19(3): 805-812. |
27 | LiL, ChenZ, SongL, et al. Characterization and electrochemical performance of lithium-active titanium dioxide inlaid LiNi0.5Co0.2Mn0.3O2 material prepared by lithium residue-assisted method[J]. J. Alloy Compd., 2015, 25(638):77-82. |
28 | WangF, ChangZ, WangX, et al. Composites of porous Co3O4 grown on Li2MnO3 microspheres as cathode materials for lithium ion batteries[J]. J. Mater. Chem. A, 2015, 3 (9):4840-4845. |
29 | YangF L, ZhangW, ChiZ X, et al. Controlled formation of core-shell structures with uniform AlPO4 nanoshells[J]. Chem. Commun., 2015, 51(14): 2943-2945. |
30 | 许鑫鸿, 郭东磊, 汤宏伟. 镍锰前驱体表面包覆Co3(PO4)2对LiNi0.5Mn1.5O4的电性能影响[C]//河南省化学会. 河南省化学会2014年学术年会论文摘要集. 郑州: 河南省化学会,2014. |
XuX H, GuoD L, TangH W. Effect of Co3(PO4)2 on the electrical properties of nickel manganese precursor on LiNi0.5Mn1.5O4[C]// Henan Chemical Society. Summary of the 2014 Annual Meeting of Henan Chemical Society. Zhengzhou: Henan Chemical Society, 2014. | |
31 | WangF, XiaoS, LiM, et al. A nanocomposite of Li2MnO3coated by FePO4 as cathode material for lithium ion batteries[J]. J. Power Sources, 2015, 1(287): 416-421. |
32 | SunY K. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Mater., 2009, 8(4): 320. |
33 | LeeK S, MyungS T, SunY K. Synthesis and electrochemical performances of core-shell structured Li[(Ni1/3Co1/3Mn1/3)0.8(Ni1/2Mn1/2)0.2]O2 cathode material for lithium ion batteries[J]. J. Power Sources, 2010,18(195): 6043-6048. |
34 | YooG W, JangB C, SonJ T. Novel design of core shell structure by NCA modification on NCM cathode material to enhance capacity and cycle life for lithium secondary battery[J]. Ceram. Int., 2015, 1(41): 1913-1916. |
35 | SunY K, KimD H, JungH G, et al. High-voltage performance of concentration-gradient Li[Ni0.67Co0.15Mn0.18]O2 cathode material for lithium-ion batteries[J]. Electrochimica Acta, 2010, 28(55): 8621-8627. |
36 | 史华. 高镍组分的核壳结构层状锂离子电池正极材料[D]. 天津: 天津理工大学, 2014. |
ShiH. High-nickel component core-shell structure layered lithium ion battery cathode material[D]. Tianjin: Tianjin University of Technology, 2014. | |
37 | WenW, ChenS, FuY, et al. A core-shell structure spinel cathode material with a concentration-gradient shell for high performance lithium-ion batteries[J]. J. Power Sources, 2015, 10(274):219-228. |
38 | HouP, ZhangH , ZiZ, et al. Core–shell and concentration-gradient cathodes prepared via co-precipitation reaction for advanced lithium-ion batteries[J]. J. Mater. Chem. A, 2017, 5(9): 4254-4279. |
39 | SunY K, ChenZ H, NohH J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nature Materials, 2012, 11(11): 942-947. |
40 | 黄金龙. 新型镍基复合锂离子电池正极材料的合成研究[D].长沙: 中南大学, 2013. |
HuangJ L. Synthesis of a new nickel-based composite lithium ion battery cathode material[D]. Changsha: Central South University, 2013. | |
41 | LiangL W, HuG R, CaoY B, et al. Synthesis and characterization of full concentration-gradient LiNi0.7Co0.1Mn0.2O2 cathode material for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2015,25(635): 92-100. |
42 | NieW B, XiaoQ C, WangJ L, et al. Preparation of Li1.2Mn0.54Co0.13Ni0.13O2@V2O5 core-shell composite and its electrochemical properties[J]. J. Inorg. Mater., 2014, 3(29): 257-263. |
43 | WuF,WangZ, SuY F, et al. Synthesis and characterization of hollow spherical cathode Li1.2Mn0.54Ni0.13Co0.13O2 assembled with nanostructured particles via homogeneous precipitation-hydrothermal synthesis[J]. J. Power Sources, 2014, 10(267): 337-346. |
44 | DuK, HuangJ, CaoY, et al. Study of effects on LiNi0.8Co0.15Al0.05O2 cathode by LiNi1/3Co1/3Mn1/3O2 coating for lithium ion batteries[J]. J. Alloy Compd., 2013, 574: 377-382. |
45 | YangX K, WangX Y, WeiQ L, et al. Synthesis and characterization of a Li-rich layered cathode material Li1.15[(Ni1/3Co1/3Mn1/3)0.5(Ni1/4Mn3/4)0.5]0.85O2 with spherical core shell structure [J]. J. Mater. Chem., 2012, 8(22): 19666-19672. |
46 | JuJ H, RyuK S. Synthesis and electrochemical performance of Li(Ni0.8Co0.15Al0.05)0.8(Ni0.5Mn0.5)0.2O2 with core-shell structure as cathode material for Li-ion batteries[J]. J. Alloy Compd., 2011, 509(30): 7985-7992. |
47 | 周恩娄. 锂离子电池层状正极材料的表面包覆研究[D]. 天津: 天津理工大学, 2013. |
ZhouE L. Surface coating of layered cathode materials for lithium ion batteries[D]. Tianjin: Tianjin University of Technology, 2013. | |
48 | ShiJ L, QiR, ZhangX D, et al. A high thermal and air stability cathode material with concentration-gradient buffer for Li-ion batteries[J]. ACS Appl. Mater. Interfaces, 2017, 9(49): 42829–42835. |
49 | YangX, WangX, HuL, et al. Layered Li[Ni0.5Co0.2Mn0.3]O2-Li2MnO3 core-shell structured cathode material with excellent stability[J]. J. Power Sources, 2013, 11(242): 589-596. |
50 | ShiJ Y, YiC W, KimK. Improved electrochemical performance of AlPO4-coated LiMn1.5Ni0.5O4 electrode for lithium-ion batteries[J]. Journal of Power Sources, 2010, 195(19): 6860-6866. |
51 | HuG R, QiX Y, HuK H, et al. A facile cathode design with a LiNi0.6Co0.2Mn0.2O2 core and an AlF3-activated Li1.2Ni0.2Mn0.6O2 shell for Li-ion batteries[J]. Electrochim Acta, 2018, 3(265): 391-399. |
52 | LiuY, ZhangM, XiaY, et al. One-step hydrothermal method synthesis of core-shell LiNi0.5Mn1.5O4 spinel cathodes for Li-ion batteries[J]. J. Power Sources, 2014, 5(256): 66-71. |
53 | LuZ P, LiuY, LuX J, et al. An active core-shell nanoscale design for high voltage cathode of lithium storage devices[J]. J. Power Sources, 2017, 6(360): 409-418. |
54 | LiangX, GaoG H, WuG M. Synthesis and characterization of hollow and core-shell structured V2O5 microspheres and their electrochemical properties[J]. Journal of Alloys and Compounds 2017, 6(725): 923-934 |
55 | YuJ, HanZ, HuX, et al. Solid-state synthesis of LiCoO2/LiCo0.99Ti0.01O2 composite as cathode material for lithium ion batteries[J].J. Power Sources, 2013, 9(225): 34-39. |
56 | HanZ H, YuJ P, ZhanH, et al. Sb2O3-modified LiNi1/3Co1/3Mn1/3O2 material with enhanced thermal safety and electrochemical property[J]. J. Power Sources, 2014, 11(254): 106-111. |
57 | ZouY H, YangX F, LuC X, et al. Multi-shelled Ni-rich Li(NixCoyMnz)O2 hollow fibers with low cation mixing as high-performance cathode materials for Li-ion batteries [J]. Advanced Science, 2017, 4(10):1600262. |
58 | ChongS K, WuY F, ChenY Z, et al. A strategy of constructing spherical core-shell structure of Li1.2Ni0.2Mn0.6O2@Li1.2Ni0.4Mn0.4O2 cathode material for high performance lithium-ion batteries[J]. Journal of Power Sources, 2017, 4(356):153-162. |
59 | LeeY, KimH, YimT, et al. Compositional core-shell design by nickel leaching on the surface of Ni-rich cathode materials for advanced high-energy and safe rechargeable batteries[J]. Journal of Power Sources, 2018, 8(400): 87-95. |
60 | QiuZ P, ZhangY J, HuangX S, et al. Beneficial effect of incorporating Ni-rich oxide and layered over-lithiated oxide into high-energy-density cathode materials for lithium-ion batteries[J]. J. Power Sources, 2014, 8(400):341-349. |
61 | GaoS L,YangT H,ZhangH Z, et al. Improved electrochemical performance and thermal stability of Li-rich material Li1.2(Ni0.25Co0.25Mn0.5)0.8O2 through a novel core-shelled structure design[J]. Journal of Alloys and Compounds, 2017, 9(729): 695-702. |
62 | ShiH, WangX Q, HouP Y, et al. Core–shell structured Li(Ni0.8Mn0.1Co0.1)0.7(Ni0.45Co0.1Mn0.45)0.3O2 cathode material for high-energy lithium ion batteries [J]. Journal of Alloys and Compounds, 2014,10(587): 710-716. |
63 | 周新文,代忠旭,张克立.锂离子电池正极材料的热稳定性[J]. 武汉大学学报(理学版), 2010, 56(3): 258-262. |
ZhouX W, DaiZ X, ZhangK L. Thermal stability of cathode materials for lithium ion batteries[J]. Journal of Wuhan University(Natural Science Edition), 2010, 56(3): 258-262. | |
64 | 阮艳莉,唐致远. LiFePO4的合成及其热分析动力学[J]. 物理化学学报, 2008, 24(5): 873-879. |
RuanY L, TangZ Y. Synthesis and thermal analysis kinetics of LiFePO4[J]. Acta Phys. Sinica, 2008, 24(5): 873-879. | |
65 | ZhangN, LiJ, LiH Y, et al. Structural, electrochemical, and thermal properties of nickel-rich LiNixMnyCozO2 materials[J]. Chem. Mater., 2018, 30(24): 8852–8860. |
66 | ParkK J, ChoiM J, MagliaF, et al. High-capacity concentration gradient LiNi0.865Co0.120Al0.015O2 cathode for lithium-ion batteries[J].Adv. Energy Mater., 2018, 8(19): 1703612. |
67 | SunY K, KimD H, YoonC S, et al. A novel cathode material with a concentration-gradient for high-energy and safe lithium-ion batteries[J]. Adv. Funct. Mater., 2010, 1(20): 485–491. |
68 | EddahechA, BriatO, VinassaJ M. Thermal characterization of a high-power lithium-ion battery: potentiometric and calorimetric measurement of entropy changes[J]. Energy, 2013,9(61): 432-439. |
69 | KrauseL J, JensenL D, DahnJ R. Measurement of parasitic reactions in Li ion cells by electrochemical calorimetry[J]. Journal of the Electrochemical Society, 2012, 159 (7): 937-943. |
70 | VallverduG, MinvielleM, AndreuN, et al. First principle study of the surface reactivity of layered lithium oxides LiMO2(M=Ni, Mn, Co)[J]. Surface Science, 2016, 1(649): 46-55. |
71 | BalasundaramM, RamarV, YapC, et al. Heat loss distribution: Impedance and thermal loss analyses in LiFePO4/graphite 18650 electrochemical cell[J]. Journal of Power Sources, 2016, 8(328): 413-421. |
72 | 宋刘斌, 刘姣, 肖忠良, 等. Li2ZrO3包覆LiNi0.8Co0.1Mn0.1O2的复合材料及其电化学性能[J]. 化工学报, 2017, 68(11): 4390-4397. |
SongL B, LiuJ, XiaoZ L, et al. Composite materials of Li2ZrO3 coated LiNi0.8Co0.1Mn0.1O2 and its electrochemical properties[J]. CIESC Journal, 2017, 68(11): 4390-4397. | |
73 | XiaoZ L,ZhouQ Q, SongL B, et al. Assessment of thermo-electrochemical performance on cathode materials for lithium ion cells[J]. International Journal of Electrochemical Science, 2016, 3(11): 2825-2834. |
74 | BardA J, FaulknerL R. Electrochemical Methods: Fundamentals and Applications[M]. New York: Wiley, 1980. |
75 | LiJ W, LiY, GuoY N, et al. A facile method to enhance electrochemical performance of high nickel cathode material LiNi0.8Co0.1Mn0.1O2via Ti doping [J]. Journal of Materials Science: Materials in Electronics, 2018, 29(13): 10702–10708. |
76 | ZhangZ, ZhouP F, MengH J, et al. Amorphous Zr(OH)4 coated LiNi0.915Co0.075Al0.01O2 cathode material with enhanced electrochemical performance for lithium ion batteries[J]. Journal of Energy Chemistry, 2017,5(26): 481–487. |
77 | XuC L, XiangW, WuZ G, et al. Constructing a protective pillaring layer by incorporating gradient Mn4+ to stabilize the surface/interfacial structure of LiNi0.815Co0.15Al0.035O2 cathode[J]. ACS Appl. Mater. Interfaces, 2018, 1(10):27821-27830. |
78 | KimU H, KimJ H , HwangJ Y, et al. Compositionally and structurally redesigned high-energy Ni-rich layered cathode for next-generation lithium batteries[J].Journal of Materials Today, 2018, 3(12): 26-36. |
79 | MinK, SeoS W, SongY Y, et al. A first-principles study of the preventive effects of Al and Mg doping on the degradation in LiNi0.8Co0.1Mn0.1O2 cathode materials[J]. Physical Chemistry Chemical Physics, 2017, 11(19): 1762-1769. |
80 | YuH, QianY, OtaniM, et al. Study of the lithium/nickel Ions exchange in the layered LiNi0.42Mn0.42Co0.16O2 cathode material for lithium ion batteries: experimental and first-principles calculations[J].Energy & Environmental Science, 2014, 7(3): 1068-1078. |
81 | LongoR C, LiangC P, KongF, et al. Core-shell nanocomposites for improving the structural stability of Li-rich layered oxide cathode materials for Li-ion batteries[J]. ACS Appl. Mater. Interfaces, 2018, 10(22): 19226-19234. |
82 | WuB,LuW. Mechanical modeling of particles with active core-shell structures for lithium-ion battery electrodes[J]. J. Phys. Chem. C, 2017, 121(35): 19022-19030. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[3] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[4] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[5] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[6] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[7] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[8] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[9] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[10] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[11] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[12] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[13] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[14] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
[15] | Qingyun YANG, Qingsong LI, Zeming CHEN, Jing DENG, Yuying LI, Fan YANG, Guoyuan CHEN, Guoxin LI. Degradation of methylparaben by UV/PMS, UV/PDS and UV/SPC process [J]. CIESC Journal, 2023, 74(3): 1322-1331. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 203
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 516
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||