CIESC Journal ›› 2019, Vol. 70 ›› Issue (8): 3121-3131.DOI: 10.11949/0438-1157.20190111
Previous Articles Next Articles
Zhining WANG1,2(),Xiehe YANG2,Yang ZHANG2(),Yan JIN1,Hai ZHANG2,Junfu LYU2
Received:
2019-03-05
Revised:
2019-05-13
Online:
2019-08-05
Published:
2019-08-05
Contact:
Yang ZHANG
王志宁1,2(),杨协和2,张扬2(),金燕1,张海2,吕俊复2
通讯作者:
张扬
作者简介:
王志宁(1990—),男,硕士研究生,13485485840@163.com
基金资助:
CLC Number:
Zhining WANG, Xiehe YANG, Yang ZHANG, Yan JIN, Hai ZHANG, Junfu LYU. NO2 formation in natural gas-fired boilers[J]. CIESC Journal, 2019, 70(8): 3121-3131.
王志宁, 杨协和, 张扬, 金燕, 张海, 吕俊复. 燃气锅炉中NO2的生成规律研究[J]. 化工学报, 2019, 70(8): 3121-3131.
Add to citation manager EndNote|Ris|BibTeX
参数 | 锅炉Ⅰ(boiler Ⅰ) | 锅炉Ⅱ(boiler Ⅱ) |
---|---|---|
运行地点 | 北京某生活小区 | 河北某汽车修理厂 |
用途 | 供热用热水锅炉 | 工业用蒸汽锅炉 |
容量 | 2 t/h | 1 t/h |
当地NO x 排放要求 | < 30 mg/m3 | < 80 mg/m3 |
低氮技术 | 分级燃烧 烟气再循环 | 分级燃烧 烟气再循环 |
再循环烟气取气位置 | 烟囱底部 | 烟囱底部 |
过量空气系数(α) | 1.20~1.25 | 1.3~1.4 |
排烟温度 | 70~100℃ | 150~200℃ |
Table 1 Specifications of two natural gas-fired boilers in field tests
参数 | 锅炉Ⅰ(boiler Ⅰ) | 锅炉Ⅱ(boiler Ⅱ) |
---|---|---|
运行地点 | 北京某生活小区 | 河北某汽车修理厂 |
用途 | 供热用热水锅炉 | 工业用蒸汽锅炉 |
容量 | 2 t/h | 1 t/h |
当地NO x 排放要求 | < 30 mg/m3 | < 80 mg/m3 |
低氮技术 | 分级燃烧 烟气再循环 | 分级燃烧 烟气再循环 |
再循环烟气取气位置 | 烟囱底部 | 烟囱底部 |
过量空气系数(α) | 1.20~1.25 | 1.3~1.4 |
排烟温度 | 70~100℃ | 150~200℃ |
Fig. 7 NO and NO2 emissions of CH4/air combustion in perfectly stirred reactor under various temperatures and excess air ratios (ambient pressure, 3.5% O2 standard)
组分 | α = 0.8 | α = 1.0 | α = 1.2 |
---|---|---|---|
CO | 5.20×10-2 | 1.85×10-2 | 5.80×10-3 |
CO2 | 7.04×10-2 | 7.90×10-2 | 7.82×10-2 |
H | 1.70×10-3 | 1.91×10-3 | 1.04×10-3 |
H2O | 2.17×10-1 | 1.82×10-1 | 1.52×10-1 |
HO2 | 8.74×10-8 | 6.48×10-7 | 3.92×10-7 |
N | 6.68×10-9 | 5.35×10-9 | 8.99×10-10 |
O2 | 1.54×10-4 | 7.55×10-3 | 3.80×10-2 |
N2 | 6.59×10-1 | 7.13×10-1 | 7.50×10-1 |
NO | 3.51×10-5 | 3.51×10-5 | 3.51×10-5 |
NO2 | 4.46×10-9 | 1.28×10-8 | 5.08×10-9 |
Table 2 Species mole fraction of hot product stream in opposed-flame computation
组分 | α = 0.8 | α = 1.0 | α = 1.2 |
---|---|---|---|
CO | 5.20×10-2 | 1.85×10-2 | 5.80×10-3 |
CO2 | 7.04×10-2 | 7.90×10-2 | 7.82×10-2 |
H | 1.70×10-3 | 1.91×10-3 | 1.04×10-3 |
H2O | 2.17×10-1 | 1.82×10-1 | 1.52×10-1 |
HO2 | 8.74×10-8 | 6.48×10-7 | 3.92×10-7 |
N | 6.68×10-9 | 5.35×10-9 | 8.99×10-10 |
O2 | 1.54×10-4 | 7.55×10-3 | 3.80×10-2 |
N2 | 6.59×10-1 | 7.13×10-1 | 7.50×10-1 |
NO | 3.51×10-5 | 3.51×10-5 | 3.51×10-5 |
NO2 | 4.46×10-9 | 1.28×10-8 | 5.08×10-9 |
1 | 北京市环境保护局 . 锅炉大气污染物排放标准: DB 11/139—2015[S]. 北京: 北京市环境保护局, 2015. |
Beijing Environmental Protection Bureau . Emission standard of air pollutants for boilers: DB 11/139—2015[S]. Beijing: Beijing Environmental Protection Bureau, 2015. | |
2 | 宋少鹏, 卓建坤, 李娜, 等 . 天然气供热锅炉低氮燃烧技术研究现状[J]. 供热制冷, 2016, (2): 18-21. |
Song S P , Zhuo J K , Li N , et al . Research status of low nitrogen combustion technology for natural gas heating boiler[J]. Heating and Cooling, 2016, (2): 18-21. | |
3 | 刘慧, 张林, 杨晓晰, 等 . 缝式低NO x 燃烧器结构的优化模拟[J]. 化工学报, 2018, 69(4): 1723-1730. |
Liu H , Zhang L , Yang X X , et al . Structure optimization simulation of slit burner with low NO x [J]. CIESC Journal, 2018, 69(4): 1723-1730. | |
4 | Hou S S , Lee C Y , Lin T H . Efficiency and emissions of a new domestic gas burner with a swirling flame[J]. Energy Conversion and Management, 2007, 48(5): 1401-1410. |
5 | 苏毅, 揭涛, 沈玲玲, 等 . 低氮燃气燃烧技术及燃烧器设计进展[J]. 工业锅炉, 2016, (4): 17-25. |
Su Y, Jie T, Shen L L, et al An overview of low NO x gas combustion technology and burner design[J]. Industrial Boiler, 2016, (4): 17-25. | |
6 | 张建军, 冯自平, 宋文吉, 等 . 连续式蓄热燃烧系统的实验研究[J]. 工程热物理学报, 2012, 33(2): 352-355. |
Zhang J J , Feng Z P , Song W J , et al . Experiments on self-regenerative high temperature air combustion[J]. Journal of Engineering Thermophysics, 2012, 33(2): 352-355. | |
7 | 周俊虎, 赵琛杰, 许建华, 等 . 电站锅炉空气分级低NO x 燃烧技术的应用[J]. 中国电机工程学报, 2010, 30(23): 19-23. |
Zhou J H , Zhao C J , Xu J H , et al . Application of air-staged and low NO x emission combustion technology in plant boiler[J]. Proceedings of the CSEE, 2010, 30(23): 19-23. | |
8 | Bai W , Li H , Deng L , et al . Air-staged combustion characteristics of pulverized coal under high temperature and strong reducing atmosphere conditions[J]. Energy & Fuels, 2014, 28(3): 1820-1828. |
9 | 胡瓅元, 罗永浩, 周力行, 等 . 外二次旋流风对旋流煤粉燃烧及NO生成的影响[J]. 化工学报, 2010, 61(9): 2437-2441. |
Hu L Y , Luo Y H , Zhou L X , et al . Effect of outer secondary air on swirling pulverized-coal combustion and NO formation[J]. CIESC Journal, 2010, 61(9): 2437-2441. | |
10 | 刘沁雯, 钟文琪, 刘雪娇, 等 . 煤/生物质流态化富氧燃烧的CO2富集特性[J]. 化工学报, 2018, 69(12): 5199-5208 |
Liu Q W , Zhong W Q , Liu X J , et al . CO2 enrichment characteristics of coal/biomass fluidized oxy-fuel combustion[J]. CIESC Journal, 2018, 69(12): 5199-5208. | |
11 | 刘畅 . 天然气富氧燃烧特性分析[J]. 当代化工, 2018, 47(4): 854-857. |
Liu C . Oxygen-enriched combustion characteristics of natural gas[J]. Contemporary Chemical Industry, 2018, 47(4): 854-857. | |
12 | 刘皓, 任瑞琪, 黄永俊, 等 . 富氧燃烧系统中 NO 的还原及其排放[J]. 化工学报, 2011, 62(2): 495-501. |
Liu H , Ren R Q , Huang Y J , et al . Reduction and emission of NO in oxy-fuel system[J]. CIESC Journal, 2011, 62(2): 495-501. | |
13 | Lee C Y , Baek S W . Effects of hybrid reburning/SNCR strategy on NO x /CO reduction and thermal characteristics in oxygen-enriched LPG flame[J]. Combustion Science and Technology, 2007, 179(8): 1649-1666. |
14 | 宋少鹏, 卓建坤, 李娜, 等 . 燃料分级与烟气再循环对天然气低氮燃烧特性影响机理[J]. 中国电机工程学报, 2016, 36(24): 6849-6858. |
Song S P , Zhuo J K , Li N , et al . Low NO x combustion mechanism of a natural gas burner with fuel-staged and flue gas recirculation[J]. Proceedings of the CSEE, 2016, 36(24): 6849-6858. | |
15 | 曾强, 刘汉周, 阎良 . 烟气再循环对天然气非预混燃烧NO x 排放特性的影响[J]. 燃烧科学与技术, 2018, 24(4): 369-375. |
Zeng Q , Liu H Z , Yan L . Effect of flue gas recirculation on NO x emission characteristics of natural gas non-premixed combustion[J]. Journal of Combustion Science and Technology, 2018, 24(4): 369-375. | |
16 | 吕煊, 顾春伟, 刘建军 . 基于F级燃气轮机烟气再循环系统的分析[J]. 动力工程学报, 2018, 38(1): 24-28. |
Lv X , Gu C W , Liu J J . Application analysis of exhaust gas recirculation technology in F-class gas turbine[J]. Journal of Chinese Society of Power Engineering, 2018, 38(1): 24-28. | |
17 | 张利琴, 宋蔷, 吴宁, 等 . 煤烟气再循环富氧燃烧污染物排放特性研究[J]. 中国电机工程学报, 2009, 29(29): 35-40. |
Zhang L Q , Song Q , Wu N , et al . Study on pollutant emission characteristics from oxy-fuel combustion of coal with recycled flue gas[J]. Proceedings of the CSEE, 2009, 29(29): 35-40. | |
18 | Ho E S , Chung S H . Numerical evaluation of NO x , mechanisms in methane-air counter flow premixed flames[J]. Journal of Mechanical Science & Technology, 2009, 23(3): 659-666. |
19 | 江子箫, 陈晓平, 蒋志坚, 等 . 城市污泥流化床燃烧过程中气态污染物排放特性[J]. 化工进展, 2018, 37(1): 368-374. |
Jiang Z X , Chen X P , Jiang Z J , et al . Gaseous pollutants emissions from fluidized bed combustion of municipal sewage sludge [J]. Chemical Industry and Engineering Progress, 2018, 37(1): 368-374. | |
20 | 王恩宇 . 气体燃料在渐变型多孔介质中的预混燃烧机理研究[D]. 杭州: 浙江大学, 2004. |
Wang E Y . Premixing combustion mechanism of gas fuel in gradual porous medium[D]. Hangzhou: Zhejiang University, 2004. | |
21 | 徐旭常, 吕俊复, 张海 . 燃烧理论与燃烧设备[M]. 北京: 机械工业出版社, 1990. |
Xu X C , Lyu J F , Zhang H . Combustion Theory and Combustion Equipment[M]. Beijing: China Machine Press, 1990. | |
22 | Baltasar J , Carvalho M G , Coelho P , et al . Flue gas recirculation in a gas-fired laboratory furnace: measurements and modelling[J]. Fuel, 1997, 76(10): 919-929. |
23 | 谢正武, 梁海杰 . 烟气再循环的作用及其对锅炉热力计算的影响[J]. 能源研究与信息, 1999, 15(3): 42-48. |
Xie Z W , Liang H J . The function of the gas recirculation of boilers and its effect on thermal calculation[J]. Energy Research and Information, 1999, 15(3): 42-48. | |
24 | 胡满银, 乔欢, 杜欣, 等 . 烟气再循环对炉内氮氧化物生成影响的数值模拟[J]. 华北电力大学学报(自然科学版), 2007, 34(6): 77-82. |
Hu M Y , Qiao H , Du X , et al . Numerical simulations of the influence of flue gas recycle on nitrogen oxide formation in boiler[J]. Journal of North China Electric Power University (Natural Science Edition), 2007, 34(6): 77-82. | |
25 | 曹乘雀, 丁士发, 施鸿飞 . 燃尽风配风率对炉膛出口烟气温度的影响[J]. 动力工程学报, 2017, 37(8): 603-607. |
Cao C Q , Ding S F , Shi H F . Effect of OFA ratio on outlet gas temperature of a boiler[J]. Journal of Chinese Society of Power Engineering, 2017, 37(8): 603-607. | |
26 | 刘联胜, 李自臻, 田亮, 等 . 基于波瓣旋流燃烧器的甲烷燃烧污染物排放特性[J]. 燃烧科学与技术, 2018, 24(3): 208-213. |
Liu L S , Li Z Z , Tian L , et al . Emission characteristic research on methane combustion in petal-swirl combustor[J]. Journal of Combustion Science and Technology, 2018, 24(3): 208-213. | |
27 | 邵卫卫, 赵岩, 刘艳, 等 .燃气轮机燃烧室预混燃烧器天然气燃料/空气掺混均匀性研究[J]. 中国电机工程学报, 2017, 37(3): 148-156. |
Shao W W , Zhao Y , Liu Y , et al . Investigation of fuel/air mixing uniformity in a natural gas premixed burner for gas turbine combustor applications[J]. Proceedings of the CSEE, 2017, 37(3): 148-156. | |
28 | 李鹏翔 . 空气分级燃烧技术的原理及工程应用与分析[J]. 锅炉技术, 2017, 48(4): 48-50. |
Li P X . Principle and engineering application and analysis of air staged combustion technology[J]. Boiler Technology, 2017, 48(4): 48-50. | |
29 | 邱榕, 范维澄 . 火灾常见有害燃烧产物的生物毒理(Ⅱ): 一氧化氮、二氧化氮[J]. 火灾科学, 2001, 10(4): 200-203. |
Qiu R , Fan W C . Biological toxicology of harmful reactive products in fire (Ⅱ): Nitrogen monoxide, nitrogen dioxide[J]. Fire Science, 2001, 10(4): 200-203. | |
30 | Sano T . NO2 formation in laminar flames[J]. Combustion Science and Technology, 1982, 29(3-6): 261-275. |
31 | Sano T . NO2 formation in the mixing region of hot burned gas with cool air—effect of surrounding air[J]. Combustion Science and Technology, 1985, 43(5/6): 129-144. |
32 | 钟北京 . 火焰中形成的二氧化氮和氧化亚氮[J]. 热能动力工程, 1996, 11(3): 147-153. |
Zhong B J . Nitrogen dioxide and nitrous oxide formed in flames[J]. Journal of Engineering for Thermal Energy and Power, 1996, 11(3): 147-153. | |
33 | CHEMKIN-PRO . Release 15131, Reaction Design[CP]. San Diego. |
34 | Smith G P , Goldeb D M , Frenklach M , et al . GRI-Mech 3.0[DB/OL]. www.me.berkeley.edu/gri_mech. |
35 | Takeno T , Nishioka M . Species conservation and emission indices for flames described by similarity solutions[J]. Combustion and Flame, 1993, 92(4): 465-468. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[3] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[4] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[7] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[8] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[9] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[10] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[11] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[12] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[13] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[14] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[15] | Kexin HUANG, Tong LI, Anqi LI, Mei LIN. Mode decomposition of flow field in T-junction with rotating impeller [J]. CIESC Journal, 2023, 74(7): 2848-2857. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||