CIESC Journal ›› 2019, Vol. 70 ›› Issue (8): 2864-2875.DOI: 10.11949/0438-1157.20190198
Previous Articles Next Articles
Fengchao WANG(),Ningbo GAO(),Cui QUAN
Received:
2019-03-06
Revised:
2019-05-02
Online:
2019-08-05
Published:
2019-08-05
Contact:
Ningbo GAO
通讯作者:
高宁博
作者简介:
王凤超(1992—),女,博士研究生,基金资助:
CLC Number:
Fengchao WANG, Ningbo GAO, Cui QUAN. Progress on pyrolysis technology of waste tire and upgrade and recycle utilization of carbon black product[J]. CIESC Journal, 2019, 70(8): 2864-2875.
王凤超, 高宁博, 全翠. 废轮胎热解技术及炭黑产物的品质提升与应用研究进展[J]. 化工学报, 2019, 70(8): 2864-2875.
Add to citation manager EndNote|Ris|BibTeX
1 | Kim J K , Lee S H . New technology of crumb rubber compounding for recycling of waste tires[J]. Journal of Applied Polymer Science, 2000, 78(8): 1573-1577. |
2 | Choi G G , Jung S H , Oh S J , et al . Total utilization of waste tire rubber through pyrolysis to obtain oils and CO2 activation of pyrolysis char[J]. Fuel Processing Technology, 2014, 123: 57-64. |
3 | Donatelli A , Iovane P , Molino A . High energy syngas production by waste tyres steam gasification in a rotary kiln pilot plant. Experimental and numerical investigations[J]. Fuel, 2010, 89(10): 2721-2728. |
4 | Martinez J D , Puy N , Murillo R , et al . Waste tyre pyrolysis —a review[J]. Renewable & Sustainable Energy Reviews, 2013, 23: 179-213. |
5 | Xu L , Jiang Y , Qiu R . Parametric study and global sensitivity analysis for co-pyrolysis of rape straw and waste tire via variance-based decomposition[J]. Bioresource Technology, 2018, 247: 545-552. |
6 | 曹青, 刘岗, 鲍卫仁, 等 . 生物质与废轮胎共热解及催化对热解油的影响[J]. 化工学报, 2007, 58(5): 1283-1289. |
Cao Q , Liu G , Bao W R , et al . Influence of co-pyrolysis and catalysis of biomass with waste tire on pyrolytic oil properties[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(5): 1283-1289. | |
7 | Danon B , de Villiers A , Gorgens J F . Elucidation of the different devolatilisation zones of tyre rubber pyrolysis using TGA-MS[J]. Thermochimica Acta, 2015, 614: 59-61. |
8 | Xu F F , Wang B , Yang D , et al . TG-FTIR and Py-GC/MS study on pyrolysis mechanism and products distribution of waste bicycle tire[J]. Energy Conversion and Management, 2018, 175: 288-297. |
9 | 刘海兵, 付兴民, 柳树成, 等 . 初温和终温对废轮胎热解产物分布影响[J]. 环境工程, 2012, 30(5): 144-148. |
Liu H B , Fu X M , Liu S C , et al . Influence of the initial and the finial temperature on the pyrolytic product distribution of scrap tires [J]. Environmental Engineering, 2012, 30(5): 144-148. | |
10 | Christian R H P , Dominique B . The role of extractives during vacuum pyrolysis of wood[J]. Journal of Applied Polymer Science, 2010, 41(1/2): 337-348. |
11 | Lopez G , Olazar M , Aguado R , et al . Vacuum pyrolysis of waste tires by continuously feeding into a conical spouted bed reactor[J]. Industrial & Engineering Chemistry Research, 2010, 49(19): 8990-8997. |
12 | 吴丹, 周洁, 俞天明, 等 . 废轮胎热解衍生油非加氢脱硫[J]. 环境工程学报, 2013, 7(8): 3153-3157. |
Wu D , Zhou J , Yu T M , et al . Non-hydrogenation desulfurization of derived pyrolytic oil from scrap tires[J]. Chinese Journal of Environmental Engineering, 2013, 7(8): 3153-3157. | |
13 | Yang J , Gupta M , Roy X , et al . Study of tire particle mixing in a moving and stirred bed vacuum pyrolysis reactor[J]. Canadian Journal of Chemical Engineering, 2004, 82(3): 510-519. |
14 | Hidalgo-Herrador J M , Vrablik A , Cerny R , et al . Effect of waste tires addition on a low-temperature hydrovisbreaking process of vacuum residue[J]. Chemical Papers, 2017, 71(6): 1175-1182. |
15 | Falciglia P P , Roccaro P , Bonanno L , et al . A review on the microwave heating as a sustainable technique for environmental remediation/detoxification applications[J]. Renewable and Sustainable Energy Reviews, 2018, 95: 147-170. |
16 | Bartoli M , Rosi L , Giovannelli A , et al . Microwave assisted pyrolysis of crop residues from Vitis vinifera [J]. Journal of Analytical and Applied Pyrolysis, 2018, 130: 305-313. |
17 | Song P , Wu X Y , Wang S F . Effect of styrene butadiene rubber on the light pyrolysis of the natural rubber[J]. Polymer Degradation and Stability, 2018, 147: 168-176. |
18 | Song Z L , Yan Y C , Xie M M , et al . Effect of steel wires on the microwave pyrolysis of tire powders[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 13443-13453. |
19 | Song Z L , Yang Y Q , Sun J , et al . Effect of power level on the microwave pyrolysis of tire powder[J]. Energy, 2017, 127: 571-580. |
20 | Song Z L , Yang Y Q , Zhou L , et al . Gaseous products evolution during microwave pyrolysis of tire powders[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18209-18215. |
21 | Undri A , Meini S , Rosi L , et al . Microwave pyrolysis of polymeric materials: waste tires treatment and characterization of the value-added products[J]. Journal of Analytical and Applied Pyrolysis, 2013, 103: 149-158. |
22 | Undri A , Rosi L , Frediani M , et al . Upgraded fuel from microwave assisted pyrolysis of waste tire[J]. Fuel, 2014, 115: 600-608. |
23 | Pinto F , Miranda M , Costa P . Production of liquid hydrocarbons from rice crop wastes mixtures by co-pyrolysis and co-hydropyrolysis[J]. Fuel, 2016, 174: 153-163. |
24 | Murena F , Garufi E , Smith R B , et al . Hydrogenative pyrolysis of waste tires[J]. Journal of Hazardous Materials, 1996, 50(1): 79-98. |
25 | Mastral A M , Murillo R , Callen M S , et al . Influence of process variables on oils from tire pyrolysis and hydropyrolysis in a swept fixed bed reactor[J]. Energy & Fuels, 2000, 14(4): 739-744. |
26 | Fang S W , Gu W L , Dai M Q , et al . A study on microwave-assisted fast co-pyrolysis of chlorella and tire in the N2 and CO2 atmospheres[J]. Bioresource Technology, 2018, 250: 821-827. |
27 | 李沙沙, 刘杰飞, 张莉, 等 . 废轮胎与煤的共热解特性[J]. 煤炭转化, 2016, 39(3): 39-43. |
Li S S , Liu J F , Zhang L , et al . Co-pyrolysis characteristics of waste tire and coal[J]. Coal Conversion, 2016, 39(3): 39-43. | |
28 | 虞宇翔, 王文亮, 常建民, 等 . 生物质与废轮胎共热解液化技术研究现状[J]. 化工进展, 2013, 32(S1): 70-75. |
Yu Y X , Wang W L , Chang J M , et al . Research status of the co-pyrolysis liquefaction of biomass and waste tire[J]. Chemical Industry and Engineering Progress, 2013, 32(S1): 70-75. | |
29 | Shah S A Y , Zeeshan M , Farooq M Z , et al . Co-pyrolysis of cotton stalk and waste tire with a focus on liquid yield quantity and quality[J]. Renewable Energy, 2019, 130: 238-244. |
30 | Wang L Z , Chai M Y , Liu R H , et al . Synergetic effects during co-pyrolysis of biomass and waste tire: a study on product distribution and reaction kinetics[J]. Bioresource Technology, 2018, 268: 363-370. |
31 | Onay O , Koca H . Determination of synergetic effect in co-pyrolysis of lignite and waste tyre[J]. Fuel, 2015, 150: 169-174. |
32 | Bicakova O , Straka P . Co-pyrolysis of waste tire/coal mixtures for smokeless fuel, maltenes and hydrogen-rich gas production[J]. Energy Conversion and Management, 2016, 116: 203-213. |
33 | Ozonoh M , Aniokete T C , Oboirien B O , et al . Techno-economic analysis of electricity and heat production by co-gasification of coal, biomass and waste tyre in South Africa[J]. Journal of Cleaner Production, 2018, 201: 192-206. |
34 | Ahmed N , Zeeshan M , Iqbal N , et al . Investigation on bio-oil yield and quality with scrap tire addition in sugarcane bagasse pyrolysis[J]. Journal of Cleaner Production, 2018, 196: 927-934. |
35 | 吴凯, 朱锦娇, 朱跃钊, 等 . 废轮胎与生物质共热解特性研究[J]. 林产化学与工业, 2018, 38(5): 53-60. |
Wu K , Zhu J J , Zhu Y Z , et al . Co-pyrolysis process of waste tire and biomass[J]. Chemistry and Industry of Forest Products, 2018, 38(5): 53-60. | |
36 | Arabiourrutia M , Olazar M , Aguado R , et al . HZSM-5 and HY zeolite catalyst performance in the pyrolysis of tires in a conical spouted bed reactor[J]. Industrial & Engineering Chemistry Research, 2008, 47(20): 7600-7609. |
37 | 丁宽, 仲兆平, 张波, 等 . 纯化凹凸棒土催化废轮胎热解制取高值液态产物[J]. 浙江大学学报(工学版), 2014, 48(11): 2053-2060. |
Ding K , Zhong Z P , Zhang B , et al . Catalytic pyrolysis of scrap tire to produce valuable liquid products using purified attapulgite[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(11): 2053-2060. | |
38 | Kordoghli S , Paraschiv M , Kuncser R , et al . Catalysts influence on thermochemical decomposition of waste tires[J]. Environmental Progress & Sustainable Energy, 2017, 36(5): 1560-1567. |
39 | Dong R K , Zhao M Z . Research on the pyrolysis process of crumb tire rubber in waste cooking oil[J]. Renewable Energy, 2018, 125: 557-567. |
40 | 常赵刚, 王利斌, 裴贤丰, 等 . 蒙东褐煤固定床热解破碎粉化特性研究[J]. 煤炭科学技术, 2017, (11): 215-221. |
Chang Z G , Wang L B , Pei X F , et al . Study on pulverization characteristics of east Inner Mongolia lignite during pyrolysis in a fixed bed [J]. Coal Science and Technology, 2017, 45(11): 215-221. | |
41 | Kordoghli S , Khiari B , Paraschiv M , et al . Impact of different catalysis supported by oyster shells on the pyrolysis of tyre wastes in a single and a double fixed bed reactor[J]. Waste Management, 2017, 67: 288-297. |
42 | Acevedo B , Barriocanal C , Alvarez R . Pyrolysis of blends of coal and tyre wastes in a fixed bed reactor and a rotary oven[J]. Fuel, 2013, 113: 817-825. |
43 | Sahoo B . The effect of parameters on the performance of a fluidized bed reactor and gasifier[J]. Chemical Physics Letters, 2011, 278(s 1-3): 26-30. |
44 | Ayanoğlu A , Yumrutaş R . Rotary kiln and batch pyrolysis of waste tire to produce gasoline and diesel like fuels[J]. Energy Conversion and Management, 2016, 111: 261-270. |
45 | Kaewluan S , Pipatmanomai S . Gasification of high moisture rubber woodchip with rubber waste in a bubbling fluidized bed[J]. Fuel Processing Technology, 2011, 92(3): 671-677. |
46 | Karatas H , Olgun H , Engin B , et al . Experimental results of gasification of waste tire with air in a bubbling fluidized bed gasifier[J]. Fuel, 2013, 105: 566-571. |
47 | Amutio M , Lopez G , Alvarez J , et al . Fast pyrolysis of eucalyptus waste in a conical spouted bed reactor[J]. Bioresource Technology, 2015, 194: 225-232. |
48 | Lopez G , Olazar M , Aguado R , et al . Continuous pyrolysis of waste tyres in a conical spouted bed reactor[J]. Fuel, 2010, 89(8): 1946-1952. |
49 | Alhassan Y , Kumar N , Bugaje I M . Catalytic upgrading of waste tire pyrolysis oil via supercritical esterification with deep eutectic solvents (green solvents and catalysts)[J]. Journal of the Energy Institute, 2016, 89(4): 683-693. |
50 | Nisar J , Ali G , Ullah N , et al . Pyrolysis of waste tire rubber: influence of temperature on pyrolysates yield[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 3469-3473. |
51 | 张波, 仲兆平 . 废轮胎热解炭吸附脱汞实验研究[J]. 东南大学学报(自然科学版), 2017, 47(3): 521-527. |
Zhang B , Zhong Z P . Research on mercury adsorption by pyrolytic char of waste tires[J]. Journal of Southeast University ( Natural Science Edition), 2017, 47(3): 521-527. | |
52 | Roy C , Pakdel H , Brouillard D . The role of extractives during vacuum pyrolysis of wood[J]. Journal of Applied Polymer Science, 2010, 41(1/2): 337-348. |
53 | Luo S Y , Feng Y . The production of fuel oil and combustible gas by catalytic pyrolysis of waste tire using waste heat of blast-furnace slag[J]. Energy Conversion and Management, 2017, 136: 27-35. |
54 | Zhang Y S , Tao Y W , Huang J , et al . Influence of silica-alumina support ratio on H2 production and catalyst carbon deposition from the Ni-catalytic pyrolysis/reforming of waste tyres[J]. Waste Management & Research, 2017, 35(10): 1045-1054. |
55 | Wang M Y , Zhang L , Li A M , et al . Comparative pyrolysis behaviors of tire tread and side wall from waste tire and characterization of the resulting chars[J]. Journal of Environmental Management, 2019, 232: 364-371. |
56 | 胡国华, 张一帆, 张立群 . 废橡胶裂解研究进展[J]. 高分子通报, 2017, (12): 1-13. |
Hu G H , Zhang Y F , Zhang L Q . Progress of waste rubber in the application of pyrolysis[J]. Polymer Bulletin, 2017, (12): 1-13. | |
57 | 沈伯雄, 鲁锋, 朱国营, 等 . 废轮胎热解炭黑及其改性后的特性研究[J]. 环境工程学报, 2010, 4(7): 1615-1618. |
Shen B X , Lu F , Zhu G Y , et al . Characterization of modified and original carbon blacks from pyrolysis of scrap tires [J]. Chinese Journal of Environmental Engineering, 2010, 4(7): 1615-1618. | |
58 | 刘俊, 陈云嫩, 聂锦霞 . 废轮胎热解炭黑制备活性炭及处理染料废水[J]. 中国环境科学, 2018, 38(10): 3795-3800. |
Liu J , Chen Y N , Nie J X . Preparation of activated carbon from waste tire pyrolysis carbon black and its treatment of dyeing waste water[J]. China Environmental Science, 2018, 38(10): 3795-3800. | |
59 | Zhang X , Li H X , Cao Q , et al . Upgrading pyrolytic residue from waste tires to commercial carbon black[J]. Waste Management & Research, 2018, 36(5): 436-444. |
60 | Heras F , Jimenez-Cordero D , Gilarranz M A , et al . Activation of waste tire char by cyclic liquid-phase oxidation[J]. Fuel Processing Technology, 2014, 127: 157-162. |
61 | Betancur M , Martinez J D , Murillo R . Production of activated carbon by waste tire thermochemical degradation with CO2 [J]. Journal of Hazardous Materials, 2009, 168(2/3): 882-887. |
62 | Hijazi A , Boyadjian C , Ahmad M N , et al . Solar pyrolysis of waste rubber tires using photoactive catalysts[J]. Waste Management, 2018, 77: 10-21. |
63 | Miandad R , Barakat M A , Rehan M , et al . Effect of advanced catalysts on tire waste pyrolysis oil[J]. Process Safety and Environmental Protection, 2018, 116: 542-552. |
64 | 田永静, 王增斌, 王晓康, 等 . 废轮胎热解炭吸附性能研究[J]. 南京林业大学学报(自然科学版), 2014, (6): 130-134. |
Tian Y J , Wang Z B , Wang X K , et al . Study on adsorption capacity of the charcoal obtained by pyrolyzation of waste tire[J].Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38 (6): 130-134. | |
65 | Banar M , Ozkan A , Akyildiz V , et al . Evaluation of solid product obtained from tire-derived fuel (TDF) pyrolysis as carbon black[J]. Journal of Material Cycles and Waste Management, 2015, 17(1): 125-134. |
66 | Guerrero-Esparza M M , Medina-Valtierra J , Carrasco-Marin F . Chars from waste tire rubber by catalytic pyrolysis and the statistical analysis of the adsorption of Fe in potable water[J]. Environmental Progress & Sustainable Energy, 2017, 36(6): 1794-1801. |
67 | Lian F , Huang F , Chen W , et al . Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solute systems[J]. Environmental Pollution, 2011, 159(4): 850-857. |
68 | 高晗, 陈帅, 马振国, 等 . 废轮胎热解炭黑的研磨改性及其在丁苯橡胶中应用[J]. 橡胶工业, 2018, 65(12): 1379-1382. |
Gao H , Chen S , Ma Z G , et al . Grinding modification of pyrolysis carbon black from waste tire and its application in SBR[J]. China Rubber Industry, 2018, 65(12): 1379-1382. | |
69 | Berki P , Karger-Kocsis J . Comparative properties of styrene-butadiene rubbers (SBR) containing pyrolytic carbon black, conventional carbon black, and organoclay[J]. Journal of Macromolecular Science Part B-Physics, 2016, 55(7): 749-763. |
70 | Shilpa, Kumar R , Sharma A . Morphologically tailored activated carbon derived from waste tires as high-performance anode for Li-ion battery[J]. Journal of Applied Electrochemistry, 2018, 48(1): 1-13. |
71 | Zhi M J , Yang F , Meng F K , et al . Effects of pore structure on performance of an activated-carbon supercapacitor electrode recycled from scrap waste tires[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(7): 1592-1598. |
72 | 赵世怀, 张翠翠, 张蕾, 等 . 以KMnO4改性炭黑为载体Pd-Ni催化剂的制备和性能[J]. 精细化工, 2019, 36(5): 940-944+970. |
Zhao S H , Zhang C C , Zhang L , et al . Preparation and properties of Pd-Ni catalysts supported by KMnO4 modified carbon black [J]. Fine Chemicals , 2019, 36(5): 940-944+970. | |
73 | Zhang C , Liang X Q , Liu S X . Hydrogen production by catalytic dehydrogenation of methylcyclohexane over Pt catalysts supported on pyrolytic waste tire char[J]. International Journal of Hydrogen Energy, 2011, 36(15): 8902-8907. |
74 | Ji R N , Yu K , Lou L L , et al . Chiral Mn(III) salen complexes immobilized directly on pyrolytic waste tire char for asymmetric epoxidation of unfunctionalized olefins[J]. Inorganic Chemistry Communications, 2012, 25: 65-69. |
75 | Sánchez-Olmos L A , Medina-Valtierra J , Sathish-Kumar K , et al . Sulfonated char from waste tire rubber used as strong acid catalyst for biodiesel production[J]. Environmental Progress & Sustainable Energy, 2017, 36(2): 619-626. |
76 | 冯振刚, 孙安石, 张东阳, 等 . 废橡胶裂解炭黑改性沥青混合料的黏弹特性研究[J]. 郑州大学学报(工学版), 2018, 39(1): 7-11. |
Feng Z G , Sun A S , Zhang D Y , et al . Viscoelastic characteristic of asphalt mixture modified with pyrolysis carbon black from waste tires[J]. Journal of Zhengzhou University(Engineering Science), 2018, 39(1): 7-11. | |
77 | 栗培龙, 马松松, 李建阁, 等 . 炭黑改性沥青混合料的动态响应主曲线分析[J]. 郑州大学学报(工学版), 2018, 39(4): 12-17. |
Li P L , Ma S S , Li J G , et al . Analysis of dynamic response master curve of carbon black modified asphalt mixture[J]. Journal of Zhengzhou University(Engineering Science), 2018, 39(4): 12-17. |
[1] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[2] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[3] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
[4] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
[5] | Jianxin CHEN, Ruijie ZHU, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of cellulose-derived biomass porous carbon and its supercapacitor performance [J]. CIESC Journal, 2022, 73(9): 4194-4206. |
[6] | Renjie GU, Jiawei ZHANG, Xueyang JIN, Lixiong WEN. Synthesis of nickel-cobalt hydroxide composites as supercapacitor materials by micro-impinging stream reactors and their performance study [J]. CIESC Journal, 2022, 73(8): 3749-3757. |
[7] | Xue’an LIU, Liyi TANG, Jian QIN, Dajiang TANG, Zhangfa TONG, Huiying QU. Preparation of carbon nanotube bridged porous carbon by Ni/Co-ZIF-8 pyrolysis and its application to supercapacitors [J]. CIESC Journal, 2022, 73(7): 3287-3297. |
[8] | Gang WANG, Xiaoping CHE, Shiyong WANG, Jieshan QIU. Carbon electrodes modified with water-soluble charged polymer binder for enhanced capacitive deionization performance [J]. CIESC Journal, 2022, 73(4): 1763-1771. |
[9] | Li LIU, Peng JIANG, Wei WANG, Tonghuan ZHANG, Liwen MU, Xiaohua LU, Jiahua ZHU. Coupling process simulation and random forest model for analyzing and predicting biomass-to-hydrogen conversion [J]. CIESC Journal, 2022, 73(11): 5230-5239. |
[10] | Chao ZHANG, Jian CHEN, Wenhua YIN, Yuanhui SHEN, Zhaoyang NIU, Xiuxin YU, Donghui ZHANG, Zhongli TANG. Transient analysis of pressure swing adsorption hydrogen purification process [J]. CIESC Journal, 2022, 73(1): 308-321. |
[11] | LUO Weili, WANG Wenwen, PAN Quanwen, GE Tianshu, WANG Ruzhu. Heat storage performance of composite adsorbent with activated carbon fiber [J]. CIESC Journal, 2021, 72(S1): 554-559. |
[12] | Kang YAN, Song YANG, Shoujun LIU, Chao YANG, Huiling FAN, Ju SHANGGUAN. In-situ preparation of ZnO-based activated carbon desulfurizer from low-rank coal [J]. CIESC Journal, 2021, 72(9): 4921-4930. |
[13] | JIAO Shuai, YANG Lei, WU Tingting, LI Hongqiang, LYU Huihong, HE Xiaojun. Synthesis of nitrogen doped hierarchically porous carbon nanosheets for supercapacitor by mixed salt template [J]. CIESC Journal, 2021, 72(5): 2869-2877. |
[14] | JIANG Wenwen, NIE Pengfei, HU Bin, LI Jingjing, LIU Jianyun. Selective capacitive adsorption of fluoride ions with Al2O3/AC anode [J]. CIESC Journal, 2021, 72(5): 2817-2825. |
[15] | WANG Jing, HAN Qiaoning, LEI Yiting, TANG Man, CHEN Lihong, CHE Junda, LIU Zuguang. One-step preparation of oxygen-enriched lignin activated carbon and its methylene blue adsorption performance [J]. CIESC Journal, 2021, 72(5): 2826-2836. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||