CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 3287-3297.DOI: 10.11949/0438-1157.20220391
• Material science and engineering, nanotechnology • Previous Articles
Xue’an LIU(),Liyi TANG,Jian QIN,Dajiang TANG,Zhangfa TONG,Huiying QU()
Received:
2022-03-20
Revised:
2022-05-15
Online:
2022-08-01
Published:
2022-07-05
Contact:
Huiying QU
通讯作者:
曲慧颖
作者简介:
刘学安(1995—),男,硕士研究生,基金资助:
CLC Number:
Xue’an LIU, Liyi TANG, Jian QIN, Dajiang TANG, Zhangfa TONG, Huiying QU. Preparation of carbon nanotube bridged porous carbon by Ni/Co-ZIF-8 pyrolysis and its application to supercapacitors[J]. CIESC Journal, 2022, 73(7): 3287-3297.
刘学安, 汤丽怡, 覃健, 唐大江, 童张法, 曲慧颖. 热解Ni/Co-ZIF-8制备碳纳米管桥连多孔碳及其在超级电容器中的应用[J]. 化工学报, 2022, 73(7): 3287-3297.
Add to citation manager EndNote|Ris|BibTeX
Samples | Dap/nm | SBET /(m2/g) | Smic /(m2/g) | Vt /(cm3/g) | Vmic /(cm3/g) | (Vmic/Vt) /% |
---|---|---|---|---|---|---|
Ni/Co-CN-700 | 4.29 | 367 | 270 | 0.39 | 0.14 | 36 |
Ni/Co-CN-800 | 5.52 | 411 | 304 | 0.57 | 0.16 | 28 |
Ni/Co-CN-900 | 5.92 | 827 | 512 | 1.23 | 0.26 | 21 |
Ni/Co-CN-950 | 5.23 | 532 | 424 | 0.70 | 0.22 | 31 |
Table 1 The pore structure parameters of Ni/Co-CN materials
Samples | Dap/nm | SBET /(m2/g) | Smic /(m2/g) | Vt /(cm3/g) | Vmic /(cm3/g) | (Vmic/Vt) /% |
---|---|---|---|---|---|---|
Ni/Co-CN-700 | 4.29 | 367 | 270 | 0.39 | 0.14 | 36 |
Ni/Co-CN-800 | 5.52 | 411 | 304 | 0.57 | 0.16 | 28 |
Ni/Co-CN-900 | 5.92 | 827 | 512 | 1.23 | 0.26 | 21 |
Ni/Co-CN-950 | 5.23 | 532 | 424 | 0.70 | 0.22 | 31 |
Samples | Atomic fraction of N/% | Concentration of nitrogen-containing functional groups/% | |||
---|---|---|---|---|---|
N-O | N-Q | N-5 | N-6 | ||
Ni/Co-CN-700 | 10.4 | 0 | 9.9 | 36.1 | 54.0 |
Ni/Co-CN-800 | 6.3 | 6.8 | 13.6 | 32.2 | 47.4 |
Ni/Co-CN-900 | 4.8 | 6.0 | 15.6 | 33.4 | 44.9 |
Ni/Co-CN-950 | 1.8 | 6.8 | 14.7 | 54.2 | 24.3 |
Table 2 Concentrations of nitrogen atoms and nitrogen-containing functional groups on the surface of Ni/Co-CN
Samples | Atomic fraction of N/% | Concentration of nitrogen-containing functional groups/% | |||
---|---|---|---|---|---|
N-O | N-Q | N-5 | N-6 | ||
Ni/Co-CN-700 | 10.4 | 0 | 9.9 | 36.1 | 54.0 |
Ni/Co-CN-800 | 6.3 | 6.8 | 13.6 | 32.2 | 47.4 |
Ni/Co-CN-900 | 4.8 | 6.0 | 15.6 | 33.4 | 44.9 |
Ni/Co-CN-950 | 1.8 | 6.8 | 14.7 | 54.2 | 24.3 |
Samples | Capacitive contribution/% | ||||
---|---|---|---|---|---|
20 mV/s | 50 mV/s | 100 mV/s | 200 mV/s | 500 mV/s | |
Ni/Co-CN-700 | 24.8 | 30.7 | 36.4 | 45.0 | 61.0 |
Ni/Co-CN-800 | 43.5 | 48.5 | 53.6 | 61.1 | 78.3 |
Ni/Co-CN-900 | 46.5 | 51.6 | 56.7 | 64.0 | 80.3 |
Ni/Co-CN-950 | 42.5 | 46.7 | 51.2 | 59.7 | 77.2 |
Table 3 The capacitance contribution of Ni/Co-CN-700, Ni/Co-CN-800, Ni/Co-CN-900 and Ni/Co-CN-950 at different scan rates
Samples | Capacitive contribution/% | ||||
---|---|---|---|---|---|
20 mV/s | 50 mV/s | 100 mV/s | 200 mV/s | 500 mV/s | |
Ni/Co-CN-700 | 24.8 | 30.7 | 36.4 | 45.0 | 61.0 |
Ni/Co-CN-800 | 43.5 | 48.5 | 53.6 | 61.1 | 78.3 |
Ni/Co-CN-900 | 46.5 | 51.6 | 56.7 | 64.0 | 80.3 |
Ni/Co-CN-950 | 42.5 | 46.7 | 51.2 | 59.7 | 77.2 |
Samples | Specific capacitance/(F/g) | Ref. |
---|---|---|
Ni/Co-CN-900 | 273.5 (0.5 A/g) | this work |
PB-15 | 199.0 (0.5 A/g) | [ |
ET-rGO | 124.0 (0.1 A/g) | [ |
N-HPC-900 | 128.5 (0.2 A/g) | [ |
ZM-K | 176.4 (0.2 A/g) | [ |
NCM | 214.8 (0.2 A/g) | [ |
Table 4 The specific capacitance of different carbon electrode materials
Samples | Specific capacitance/(F/g) | Ref. |
---|---|---|
Ni/Co-CN-900 | 273.5 (0.5 A/g) | this work |
PB-15 | 199.0 (0.5 A/g) | [ |
ET-rGO | 124.0 (0.1 A/g) | [ |
N-HPC-900 | 128.5 (0.2 A/g) | [ |
ZM-K | 176.4 (0.2 A/g) | [ |
NCM | 214.8 (0.2 A/g) | [ |
Samples | Rs/Ω | Rct/Ω |
---|---|---|
Ni/Co-CN-700 | 1.53 | 1.64 |
Ni/Co-CN-800 | 1.66 | 0.42 |
Ni/Co-CN-900 | 1.35 | 0.33 |
Ni/Co-CN-950 | 1.44 | 0.57 |
Table 5 The equivalent series resistance Rs and charge transfer resistance Rctof Ni/Co-CN-700, Ni/Co-CN-800, Ni/Co-CN-900 and Ni/Co-CN-950
Samples | Rs/Ω | Rct/Ω |
---|---|---|
Ni/Co-CN-700 | 1.53 | 1.64 |
Ni/Co-CN-800 | 1.66 | 0.42 |
Ni/Co-CN-900 | 1.35 | 0.33 |
Ni/Co-CN-950 | 1.44 | 0.57 |
1 | Huang A, El-Kady M F, Chang X, et al. Facile fabrication of multivalent VO x /graphene nanocomposite electrodes for high-energy-density symmetric supercapacitors[J]. Advanced Energy Materials, 2021, 11(26): 2100768. |
2 | Zhang G C, Feng M, Li Q, et al. High energy density in combination with high cycling stability in hybrid supercapacitors[J]. ACS Appl. Mater. Interfaces, 2022, 14(2): 2674-2682. |
3 | Wu Y, Cao J P, Zhuang Q Q, et al. Biomass-derived three-dimensional hierarchical porous carbon network for symmetric supercapacitors with ultra-high energy density in ionic liquid electrolyte[J]. Electrochimica Acta, 2021, 371: 137825. |
4 | Kazazi M. Effect of electrodeposition current density on the morphological and pseudo capacitance characteristics of porous nano-spherical MnO2 electrode[J]. Ceramicas International, 2018, 44(9): 10863-10870. |
5 | Yang J, Cao Q, Tang X, et al. 3D-printed highly stretchable conducting polymer electrodes for flexible supercapacitors[J]. Journal of Materials Chemistry A, 2021, 9(35): 19649-19658. |
6 | Zhang M J, Zhang Z S, Li F, et al. Reduced porous carbon/N-doped graphene nanocomposites for accelerated conversion and effective immobilization of lithium polysulfides in lithium-sulfur batteries[J]. Electrochimica Acta, 2021, 397: 139268. |
7 | Zhou W, Jiang J, Wu H, et al. Facile preparation of binary salt hydrates/carbon nanotube composite for thermal storage materials with enhanced structural stability[J]. ACS Applied Energy Materials, 2021, 4(5): 4561-4569. |
8 | Chae J S, Kang W, Roh K C. sp2-sp3 hybrid porous carbon materials applied for supercapacitors[J]. Energies, 2021, 14(19): 5990-5999. |
9 | Luo L, Luo L C, Deng J P, et al. High performance supercapacitor electrodes based on B/N co-doped biomass porous carbon materials by KOH activation and hydrothermal treatment[J]. International Journal of Hydrogen Energy, 2021, 46(63): 31927-31937. |
10 | Razaq R, Zhang N N, Xin Y, et al. Electrocatalytic conversion of lithium polysulfides by highly dispersed ultrafine Mo2C nanoparticles on hollow N-doped carbon flowers for Li-S batteries[J]. EcoMat, 2020, 2(2): 21805112. |
11 | Abirami R, Kabilan R, Nagaraju P, et al. Enhanced electrochemical performance of Mn3O4/multiwalled carbon nanotube nanocomposite for supercapacitor applications[J]. Journal of Electronic Materials, 2021, 50(11): 6467-6474. |
12 | Zhu S, Göbel M, Formanek P, et al. Mask-painting symmetrical micro-supercapacitors based on scalable, pore size adjustable, N-doped hierarchical porous carbon[J]. Journal of Materials Chemistry A, 2021, 9 (24): 14052-14063. |
13 | Cheng J, Liu Y, Zhang X, et al. Structure engineering in interconnected porous hollow carbon spheres with superior rate capability for supercapacitors and lithium-sulfur batteries[J]. Chemical Engineering Journal, 2021, 419:129649. |
14 | Zheng K, Tan H, Wang L, et al. Vertically oriented Cu2+1O@Cu-MOFs hybrid clusters for high-performance electrochemical capacitors[J]. Advanced Materials Interfaces, 2021, 8(10): 2002145. |
15 | 魏风, 毕宏晖, 焦帅, 等. 超级电容器用相互连接的类石墨烯纳米片[J].物理化学学报, 2020, 36(2): 1903043. |
Wei F, Bi H H, Jiao S, et al. Interconnected graphene-like nanosheets for supercapacitors[J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903043. | |
16 | Bi H, He X, Zhang H, et al. N, P co-doped hierarchical porous carbon from rapeseed cake with enhanced supercapacitance[J]. Renewable Energy, 2021, 170: 188-196. |
17 | Ye C, Xu L. Heteroatom-doped porous carbon derived from zeolite imidazole framework/polymer core-shell fibers as an electrode material for supercapacitor[J]. Composites Part B: Engineering, 2021, 225: 109256. |
18 | Cordero-Lanzac T, Rosas J M, García-Mateos F J, et al. Role of different nitrogen functionalities on the electrochemical performance of activated carbons[J]. Carbon, 2018, 126: 65-76. |
19 | Huang Y J, Luo C, Zhang Q B, et al. Rational design of three-dimensional branched NiCo-P@CoNiMo-P core/shell nanowire heterostructures for high-performance hybrid supercapacitor[J]. Journal of Energy Chemistry, 2021, 61(10): 489-496. |
20 | Bowen J, Seyedsina H, Hong Q C, et al. MoP-protected Mo oxide nanotube arrays for long-term stable supercapacitors[J]. Applied Materials Today, 2019, 17: 227-235. |
21 | Xiang A Q, Xie S, Pan F, et al. Cobalt and nitrogen atoms co-doped porous carbon for advanced electrical double-layer capacitors[J]. Chinese Chemical Letters, 2020, 32(2): 830-833. |
22 | Yang C, Yun S, Shi J, et al. Tailoring the supercapacitive behaviors of Co/Zn-ZIF derived nanoporous carbon via incorporating transition metal species: a hybrid experimental-computational exploration[J]. Chemical Engineering Journal, 2021, 419: 129636. |
23 | Lu P, Sun Y, Xiang H F, et al. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries[J]. Advanced Functional Materials, 2018, 8(8): 1-8. |
24 | Xing B L, Zhang C T, Liu Q R, et al. Green synthesis of porous graphitic carbons from coal tar pitch templated by nano-CaCO3 for high-performance lithium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 795: 91-102. |
25 | 宗爽, 刘歆颖, 陈爱兵. 金属有机框架衍生的0维材料在超级电容器中的应用[J]. 化工学报, 2020, 71(6): 2612-2627. |
Zong S, Liu X Y, Chen A B. Metal-organic frameworks-derived zero-dimensional materials for supercapacitors[J]. CIESC Journal, 2020, 71(6): 2612-2627. | |
26 | Koo W T, Jang J S, Kim I D. Metal-organic frameworks for chemiresistive sensors[J]. Chem, 2019, 5(8): 1938-1963. |
27 | Huang L Q, Luo Z Y, Han W J, et al. Direct transformation of ZIF-8 into hollow porous carbons and hollow carbon composites[J]. Nano Research, 2022, 15: 5769-5774. |
28 | Yun Y, Fang Y, Fu W, et al. Exploiting the fracture in metal-organic frameworks: a general strategy for bifunctional atom-precise nanocluster/ZIF-8(300℃) composites[J]. Small, 2022, 18(17): e2107459. |
29 | Zhang J, Tan Y, Song W J. Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: a review[J]. Microchimica Acta, 2020, 187(4): 1-23. |
30 | Lei Z W, Deng Y H, Wang C Y. Multiphase surface growth of hydrophobic ZIF-8 on melamine sponge for excellent oil/water separation and effective catalysis in a Knoevenagel reaction[J]. Journal of Materials Chemistry A, 2018, 6(7): 3258-3263. |
31 | Huang K, Rong C, Zhang W, et al. MOF-assisted synthesis of Ni, Co, Zn, and N multidoped porous carbon as highly efficient oxygen reduction electrocatalysts in Zn-air batteries[J]. Materials Today Energy, 2021, 19: 100579-100589. |
32 | Yuan F, Zhang D, Li Z, et al. Unraveling the intercorrelation between micro/mesopores and K migration behavior in hard carbon[J]. Small, 2022, 18(12): e2107113. |
33 | 刘宇喆, 李成才, 李琳, 等. 活性炭的微结构与超级电容器性能的构效关系[J].化工学报, 2022, 73(4): 1807-1816. |
Liu Y Z, Li C C, Li L, et al. Structure-property relationship between microstructure of activated carbon and supercapacitor performance[J]. CIESC Journal, 2022, 73(4): 1807-1816. | |
34 | Liu S, Zhou J, Song H. Tailoring highly N-doped carbon materials from hexamine-based MOFs: superior performance and new insight into the roles of N configurations in Na-ion storage[J]. Small, 2018, 14(12): e1703548. |
35 | Wang B, Gu L, Yuan F, et al. Edge-enrich N-doped graphitic carbon: boosting rate capability and cyclability for potassium ion battery[J]. Chemical Engineering Journal, 2022, 432: 134321. |
36 | Zhang M, Chen M, Reddeppa N, et al. Nitrogen self-doped carbon aerogels derived from trifunctional benzoxazine monomers as ultralight supercapacitor electrodes[J]. Nanoscale, 2018, 10(14): 6549-6557. |
37 | Zhang X Z, Raj D V, Zhou X F, et al. Solvent evaporation induced graphene powder with high volumetric capacitance and outstanding rate capability for supercapacitors[J]. Journal of Power Sources, 2018, 382: 95-100. |
38 | Shang Z, An X Y, Liu L Q, et al. Chitin nanofibers as versatile bio-templates of zeolitic imidazolate frameworks for N-doped hierarchically porous carbon electrodes for supercapacitor[J]. Carbohydrate Polymers, 2021, 251: 117107. |
39 | Zhao B, Song C, Wang F, et al. Facile synthesis of microporous N-doped carbon material and its application in supercapacitor[J]. Microporous and Mesoporous Materials, 2020, 306: 110483. |
[1] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[2] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[3] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
[4] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
[5] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
[6] | Jianxin CHEN, Ruijie ZHU, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of cellulose-derived biomass porous carbon and its supercapacitor performance [J]. CIESC Journal, 2022, 73(9): 4194-4206. |
[7] | Haoyu XIAO, Haiping YANG, Xiong ZHANG, Yingquan CHEN, Xianhua WANG, Hanping CHEN. Recent progress of catalytic pyrolysis of plastics to produce high value-added products [J]. CIESC Journal, 2022, 73(8): 3461-3471. |
[8] | Renjie GU, Jiawei ZHANG, Xueyang JIN, Lixiong WEN. Synthesis of nickel-cobalt hydroxide composites as supercapacitor materials by micro-impinging stream reactors and their performance study [J]. CIESC Journal, 2022, 73(8): 3749-3757. |
[9] | Chuyue CAI, Xiaoming FANG, Zhengguo ZHANG, Ziye LING. Enhancing heat dissipation performance of paraffin/silicone rubber phase change thermal pad by introducing carbon nanotubes [J]. CIESC Journal, 2022, 73(7): 2874-2884. |
[10] | Xingda SHI, Huayan CHEN, Yanan GE, Chunrui WU, Hongyou JIA, Xiaolong LYU. Construction of three-dimensional network by modified MWCNT and AlN fillings in PVDF to improve the thermal conductivity [J]. CIESC Journal, 2022, 73(5): 2262-2269. |
[11] | Zihe CHEN, Chengzhi ZHAO, Wenli MAO, Nan SHENG, Chunyu ZHU. Preparation and thermal properties of phase change composites supported by oriented biomass porous carbon [J]. CIESC Journal, 2022, 73(4): 1817-1825. |
[12] | Xue HAN, Shengwang GAO, Guoying WANG, Xunfeng XIA. Research of enhanced carbon nanotubes activated peroxymonosulfate by cerium doping [J]. CIESC Journal, 2022, 73(4): 1743-1753. |
[13] | Heng MAO, Yue WANG, Sen WANG, Weimin LIU, Jing LYU, Fuxue CHEN, Zhiping ZHAO. APTES-modified ZIF-L/PEBA mixed matrix membranes for enhancing phenol perm-selective pervaporation [J]. CIESC Journal, 2022, 73(3): 1389-1402. |
[14] | Boyang REN, Xiaogang CHE, Siyu LIU, Man WANG, Xinghua HAN, Ting DONG, Juan YANG. Preparation of coal-based porous carbon nanosheets by molten salt strategy as anodes for sodium-ion batteries [J]. CIESC Journal, 2022, 73(10): 4745-4753. |
[15] | Shide WU, Feng YI, Dan PING, Yifei ZHANG, Jian HAO, Guoji LIU, Shaoming FANG. NH4Cl assisted preparation of Ni-N-CNTs catalyst and its performance for electrochemical CO2 reduction [J]. CIESC Journal, 2022, 73(10): 4484-4497. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||