1 |
Huang A, El-Kady M F, Chang X, et al. Facile fabrication of multivalent VO x /graphene nanocomposite electrodes for high-energy-density symmetric supercapacitors[J]. Advanced Energy Materials, 2021, 11(26): 2100768.
|
2 |
Zhang G C, Feng M, Li Q, et al. High energy density in combination with high cycling stability in hybrid supercapacitors[J]. ACS Appl. Mater. Interfaces, 2022, 14(2): 2674-2682.
|
3 |
Wu Y, Cao J P, Zhuang Q Q, et al. Biomass-derived three-dimensional hierarchical porous carbon network for symmetric supercapacitors with ultra-high energy density in ionic liquid electrolyte[J]. Electrochimica Acta, 2021, 371: 137825.
|
4 |
Kazazi M. Effect of electrodeposition current density on the morphological and pseudo capacitance characteristics of porous nano-spherical MnO2 electrode[J]. Ceramicas International, 2018, 44(9): 10863-10870.
|
5 |
Yang J, Cao Q, Tang X, et al. 3D-printed highly stretchable conducting polymer electrodes for flexible supercapacitors[J]. Journal of Materials Chemistry A, 2021, 9(35): 19649-19658.
|
6 |
Zhang M J, Zhang Z S, Li F, et al. Reduced porous carbon/N-doped graphene nanocomposites for accelerated conversion and effective immobilization of lithium polysulfides in lithium-sulfur batteries[J]. Electrochimica Acta, 2021, 397: 139268.
|
7 |
Zhou W, Jiang J, Wu H, et al. Facile preparation of binary salt hydrates/carbon nanotube composite for thermal storage materials with enhanced structural stability[J]. ACS Applied Energy Materials, 2021, 4(5): 4561-4569.
|
8 |
Chae J S, Kang W, Roh K C. sp2-sp3 hybrid porous carbon materials applied for supercapacitors[J]. Energies, 2021, 14(19): 5990-5999.
|
9 |
Luo L, Luo L C, Deng J P, et al. High performance supercapacitor electrodes based on B/N co-doped biomass porous carbon materials by KOH activation and hydrothermal treatment[J]. International Journal of Hydrogen Energy, 2021, 46(63): 31927-31937.
|
10 |
Razaq R, Zhang N N, Xin Y, et al. Electrocatalytic conversion of lithium polysulfides by highly dispersed ultrafine Mo2C nanoparticles on hollow N-doped carbon flowers for Li-S batteries[J]. EcoMat, 2020, 2(2): 21805112.
|
11 |
Abirami R, Kabilan R, Nagaraju P, et al. Enhanced electrochemical performance of Mn3O4/multiwalled carbon nanotube nanocomposite for supercapacitor applications[J]. Journal of Electronic Materials, 2021, 50(11): 6467-6474.
|
12 |
Zhu S, Göbel M, Formanek P, et al. Mask-painting symmetrical micro-supercapacitors based on scalable, pore size adjustable, N-doped hierarchical porous carbon[J]. Journal of Materials Chemistry A, 2021, 9 (24): 14052-14063.
|
13 |
Cheng J, Liu Y, Zhang X, et al. Structure engineering in interconnected porous hollow carbon spheres with superior rate capability for supercapacitors and lithium-sulfur batteries[J]. Chemical Engineering Journal, 2021, 419:129649.
|
14 |
Zheng K, Tan H, Wang L, et al. Vertically oriented Cu2+1O@Cu-MOFs hybrid clusters for high-performance electrochemical capacitors[J]. Advanced Materials Interfaces, 2021, 8(10): 2002145.
|
15 |
魏风, 毕宏晖, 焦帅, 等. 超级电容器用相互连接的类石墨烯纳米片[J].物理化学学报, 2020, 36(2): 1903043.
|
|
Wei F, Bi H H, Jiao S, et al. Interconnected graphene-like nanosheets for supercapacitors[J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903043.
|
16 |
Bi H, He X, Zhang H, et al. N, P co-doped hierarchical porous carbon from rapeseed cake with enhanced supercapacitance[J]. Renewable Energy, 2021, 170: 188-196.
|
17 |
Ye C, Xu L. Heteroatom-doped porous carbon derived from zeolite imidazole framework/polymer core-shell fibers as an electrode material for supercapacitor[J]. Composites Part B: Engineering, 2021, 225: 109256.
|
18 |
Cordero-Lanzac T, Rosas J M, García-Mateos F J, et al. Role of different nitrogen functionalities on the electrochemical performance of activated carbons[J]. Carbon, 2018, 126: 65-76.
|
19 |
Huang Y J, Luo C, Zhang Q B, et al. Rational design of three-dimensional branched NiCo-P@CoNiMo-P core/shell nanowire heterostructures for high-performance hybrid supercapacitor[J]. Journal of Energy Chemistry, 2021, 61(10): 489-496.
|
20 |
Bowen J, Seyedsina H, Hong Q C, et al. MoP-protected Mo oxide nanotube arrays for long-term stable supercapacitors[J]. Applied Materials Today, 2019, 17: 227-235.
|
21 |
Xiang A Q, Xie S, Pan F, et al. Cobalt and nitrogen atoms co-doped porous carbon for advanced electrical double-layer capacitors[J]. Chinese Chemical Letters, 2020, 32(2): 830-833.
|
22 |
Yang C, Yun S, Shi J, et al. Tailoring the supercapacitive behaviors of Co/Zn-ZIF derived nanoporous carbon via incorporating transition metal species: a hybrid experimental-computational exploration[J]. Chemical Engineering Journal, 2021, 419: 129636.
|
23 |
Lu P, Sun Y, Xiang H F, et al. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries[J]. Advanced Functional Materials, 2018, 8(8): 1-8.
|
24 |
Xing B L, Zhang C T, Liu Q R, et al. Green synthesis of porous graphitic carbons from coal tar pitch templated by nano-CaCO3 for high-performance lithium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 795: 91-102.
|
25 |
宗爽, 刘歆颖, 陈爱兵. 金属有机框架衍生的0维材料在超级电容器中的应用[J]. 化工学报, 2020, 71(6): 2612-2627.
|
|
Zong S, Liu X Y, Chen A B. Metal-organic frameworks-derived zero-dimensional materials for supercapacitors[J]. CIESC Journal, 2020, 71(6): 2612-2627.
|
26 |
Koo W T, Jang J S, Kim I D. Metal-organic frameworks for chemiresistive sensors[J]. Chem, 2019, 5(8): 1938-1963.
|
27 |
Huang L Q, Luo Z Y, Han W J, et al. Direct transformation of ZIF-8 into hollow porous carbons and hollow carbon composites[J]. Nano Research, 2022, 15: 5769-5774.
|
28 |
Yun Y, Fang Y, Fu W, et al. Exploiting the fracture in metal-organic frameworks: a general strategy for bifunctional atom-precise nanocluster/ZIF-8(300℃) composites[J]. Small, 2022, 18(17): e2107459.
|
29 |
Zhang J, Tan Y, Song W J. Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: a review[J]. Microchimica Acta, 2020, 187(4): 1-23.
|
30 |
Lei Z W, Deng Y H, Wang C Y. Multiphase surface growth of hydrophobic ZIF-8 on melamine sponge for excellent oil/water separation and effective catalysis in a Knoevenagel reaction[J]. Journal of Materials Chemistry A, 2018, 6(7): 3258-3263.
|
31 |
Huang K, Rong C, Zhang W, et al. MOF-assisted synthesis of Ni, Co, Zn, and N multidoped porous carbon as highly efficient oxygen reduction electrocatalysts in Zn-air batteries[J]. Materials Today Energy, 2021, 19: 100579-100589.
|
32 |
Yuan F, Zhang D, Li Z, et al. Unraveling the intercorrelation between micro/mesopores and K migration behavior in hard carbon[J]. Small, 2022, 18(12): e2107113.
|
33 |
刘宇喆, 李成才, 李琳, 等. 活性炭的微结构与超级电容器性能的构效关系[J].化工学报, 2022, 73(4): 1807-1816.
|
|
Liu Y Z, Li C C, Li L, et al. Structure-property relationship between microstructure of activated carbon and supercapacitor performance[J]. CIESC Journal, 2022, 73(4): 1807-1816.
|
34 |
Liu S, Zhou J, Song H. Tailoring highly N-doped carbon materials from hexamine-based MOFs: superior performance and new insight into the roles of N configurations in Na-ion storage[J]. Small, 2018, 14(12): e1703548.
|
35 |
Wang B, Gu L, Yuan F, et al. Edge-enrich N-doped graphitic carbon: boosting rate capability and cyclability for potassium ion battery[J]. Chemical Engineering Journal, 2022, 432: 134321.
|
36 |
Zhang M, Chen M, Reddeppa N, et al. Nitrogen self-doped carbon aerogels derived from trifunctional benzoxazine monomers as ultralight supercapacitor electrodes[J]. Nanoscale, 2018, 10(14): 6549-6557.
|
37 |
Zhang X Z, Raj D V, Zhou X F, et al. Solvent evaporation induced graphene powder with high volumetric capacitance and outstanding rate capability for supercapacitors[J]. Journal of Power Sources, 2018, 382: 95-100.
|
38 |
Shang Z, An X Y, Liu L Q, et al. Chitin nanofibers as versatile bio-templates of zeolitic imidazolate frameworks for N-doped hierarchically porous carbon electrodes for supercapacitor[J]. Carbohydrate Polymers, 2021, 251: 117107.
|
39 |
Zhao B, Song C, Wang F, et al. Facile synthesis of microporous N-doped carbon material and its application in supercapacitor[J]. Microporous and Mesoporous Materials, 2020, 306: 110483.
|