CIESC Journal ›› 2019, Vol. 70 ›› Issue (9): 3449-3457.DOI: 10.11949/0438-1157.20190215
• Process system engineering • Previous Articles Next Articles
Wei CHAI1,2(),Longhang GUO1,2,Binbin CHI1,2
Received:
2019-03-11
Revised:
2019-06-02
Online:
2019-09-05
Published:
2019-09-05
Contact:
Wei CHAI
通讯作者:
柴伟
作者简介:
柴伟(1981—),男,博士,讲师,基金资助:
CLC Number:
Wei CHAI, Longhang GUO, Binbin CHI. Interval model for predicting effluent quality variables of wastewater treatment plants[J]. CIESC Journal, 2019, 70(9): 3449-3457.
柴伟, 郭龙航, 池彬彬. 污水处理厂出水水质变量区间预测建模[J]. 化工学报, 2019, 70(9): 3449-3457.
Add to citation manager EndNote|Ris|BibTeX
水质变量 | 集员辨识 | 最小二乘法 | ||
---|---|---|---|---|
平均 宽度/ (g/m3) | 包含 实测值概率/ % | 平均 宽度/ (g/m3) | 包含 实测值概率/ % | |
BOD | 0.343 | 100 | 0.391 | 99.7 |
COD | 2.298 | 100 | 2.338 | 99.4 |
TSS | 1.817 | 100 | 1.689 | 99.3 |
Table 1 Performance of confidence intervals
水质变量 | 集员辨识 | 最小二乘法 | ||
---|---|---|---|---|
平均 宽度/ (g/m3) | 包含 实测值概率/ % | 平均 宽度/ (g/m3) | 包含 实测值概率/ % | |
BOD | 0.343 | 100 | 0.391 | 99.7 |
COD | 2.298 | 100 | 2.338 | 99.4 |
TSS | 1.817 | 100 | 1.689 | 99.3 |
1 | Gernaey K V , van Loosdrecht M C M , Henze M , et al . Activated sludge wastewater treatment plant modelling and simulation: state of the art[J]. Environmental Modelling and Software, 2004, 19(9): 763-783. |
2 | Henze M , Grady C P L , Gujer W , et al . Activated sludge model No. 1: IAWPRC scientific and technical reports No.1[R]. London: IAWPRC, 1987. |
3 | Henze M , Gujer W , Mino T , et al . Activated Sludge Models ASM1, ASM2, ASM2d and ASM3[M]. London: IWA Publishing, 2000. |
4 | Khataee A R , Kasiri M B . Modeling of biological water and wastewater treatment processes using artificial neural networks[J]. Clean-Soil, Air, Water, 2011, 39(8): 742-749. |
5 | Güçlü D , Ş Dursun . Artificial neural network modelling of a large-scale wastewater treatment plant operation[J]. Bioprocess and Biosystems Engineering, 2010, 33(9): 1051-1058. |
6 | Sainz G I , Fuente M J , Vega P . Recurrent neuro-fuzzy modeling of a wastewater treatment plant[J]. European Journal of Control, 2004, 10(1): 84-96. |
7 | Belanche L A , Valdés J J , Comas J , et al . Towards a model of input-output behaviour of wastewater treatment plants using soft computing techniques[J]. Environmental Modelling and Software, 1999, 14(5): 409-419. |
8 | Hamed M M , Khalafallah M G , Hassanien E A . Prediction of wastewater treatment plant performance using artificial neural networks[J]. Environmental Modelling and Software, 2004, 19(10): 919-928. |
9 | Raduly B , Gernaey K V , Capodaglio A G , et al . Artificial neural networks for rapid WWTP performance evaluation: methodology and case study[J]. Environmental Modelling and Software, 2007, 22(8): 1208-1216. |
10 | Moral H , Aksoy A , Gokcay C F . Modeling of the activated sludge process by using artificial neural networks with automated architecture screening[J]. Computers and Chemical Engineering, 2008, 32(10): 2471-2478. |
11 | Mjalli F S , Al-Asheh S , Alfadala H E . Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance[J]. Journal of Environmental Management, 2007, 83(3): 329-338. |
12 | Lee J W , Suh C , Hong Y S T , et al . Sequential modelling of a full-scale wastewater treatment plant using an artificial neural network[J]. Bioprocess and Biosystems Engineering, 2011, 34(8): 963-973. |
13 | Bagheri M , Mirbagheri S A , Ehteshami M , et al . Modeling of a sequencing batch reactor treating municipal wastewater using multi-layer perceptron and radial basis function artificial neural networks[J]. Process Safety and Environmental Protection, 2015, 93: 111-123. |
14 | Liu Q , Ibeas A , Vilanova R . Neural network identification of wastewater treatment plants[C]//Proceedings of 23rd Mediterranean Conference on Control and Automation. IEEE, 2015: 840-846. |
15 | Škrjanc I . Confidence interval of fuzzy models: an example using a waste-water treatment plant[J]. Chemometrics and Intelligent Laboratory Systems, 2009, 96(2): 182-187. |
16 | Ni W D , Wang K , Chen T , et al . GPR model with signal preprocessing and bias update for dynamic processes modeling[J]. Control Engineering Practice, 2012, 20(12): 1281-1292. |
17 | Liu Y Q , Huang D P , Li Y . Development of interval soft sensors using enhanced just-in-time learning and inductive confidence predictor[J]. Industrial and Engineering Chemistry, 2012, 51(8): 3356-3367. |
18 | Liu Y Q , Guo J H , Wang Q L , et al . Prediction of filamentous sludge bulking using a state-based Gaussian processes regression model[J]. Scientific Reports, 2016, 6: 31303. |
19 | 宋留, 杨冲, 张辉, 等 . 造纸废水处理过程的高斯过程回归软测量建模[J]. 中国环境科学, 2018, 38(7): 2564-2571. |
Song L , Yang C , Zhang H , et al . Soft-sensor modeling of papermaking wastewater treatment process based on Gaussian process[J]. China Environmental Science, 2018, 38(7): 2564-2571. | |
20 | 柴伟, 纪镐南 . 污水处理出水BOD区间预测建模[J]. 哈尔滨工业大学学报, 2018, 50(2): 71-76. |
Chai W , Ji H N . Interval predictor models for effluent BOD of wastewater treatment[J]. Journal of Harbin Institute of Technology, 2018, 50(2): 71-76. | |
21 | Chai W , Guo L H , Li X M , et al . Interval prediction of effluent TP for wastewater treatment plants[C]//Proceedings of 2019 IEEE Conference on Control Technology and Applications. IEEE, 2019: 511-516. |
22 | Alex J , Beteau J F , Copp J B , et al . Benchmark for evaluating control strategies in wastewater treatment plants[C]//Proceedings of 1999 European Control Conference. IEEE, 1999: 3746-3751. |
23 | Jeppsson U , Pons M N . The COST benchmark simulation model-current state and future perspective[J]. Control Engineering Practice, 2004, 12(3): 299-304. |
24 | Mirbagheri S A , Bagheri M , Boudaghpour S , et al . Performance evaluation and modeling of a submerged membrane bioreactor treating combined municipal and industrial wastewater using radial basis function artificial neural networks[J]. Journal of Environmental Health Science and Engineering, 2015, 13: 17. |
25 | Bezdek J C . Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981. |
26 | Milanese M , Vicino A . Optimal estimation theory for dynamic systems with set membership uncertainty: an overview[J]. Automatica, 1991, 27(6): 997-1009. |
27 | Chai W , Sun X F , Qiao J F . Improved zonotopic method to set membership identification for systems with time-varying parameters[J]. IET Control Theory and Applications, 2011, 5(17): 2039-2044. |
28 | Chai W , Sun X F , Qiao J F . Set membership state estimation with improved zonotopic description of feasible solution set[J]. International Journal of Robust and Nonlinear Control, 2013, 23(14): 1642-1654. |
29 | Fogel E , Huang Y F . On the value of information in system identification–bounded noise case[J]. Automatica, 1982, 18(2): 229-238. |
30 | Belforte G , Bona B . An improved parameter identification algorithm for signals with unknown but bounded errors[C]//Proceedings of the 7th IFAC/IFORS Symposium on Identification and System Parameter Estimation. IFAC, 1985: 1507-1511. |
31 | Chai W , Qiao J F . Passive robust fault detection using RBF neural modeling based on set membership identification[J]. Engineering Applications of Artificial Intelligence (a Journal of IFAC), 2014, 28: 1-12. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Mengya LIAN, Yingying TAN, Lin WANG, Feng CHEN, Yifei CAO. Heating performance of air preheated integrated ground water heat pump air-conditioning system [J]. CIESC Journal, 2023, 74(S1): 311-319. |
[3] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[4] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[5] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
[6] | Xudong YU, Qi LI, Niancu CHEN, Li DU, Siying REN, Ying ZENG. Phase equilibria and calculation of aqueous ternary system KCl + CaCl2 + H2O at 298.2, 323.2, and 348.2 K [J]. CIESC Journal, 2023, 74(8): 3256-3265. |
[7] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[8] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[9] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[10] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[11] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[12] | Chunyu LIU, Huanyu ZHOU, Yue MA, Changtao YUE. Drying characteristics and mathematical model of CaO-conditioned oil sludge [J]. CIESC Journal, 2023, 74(7): 3018-3027. |
[13] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[14] | Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression [J]. CIESC Journal, 2023, 74(6): 2495-2502. |
[15] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||