CIESC Journal ›› 2019, Vol. 70 ›› Issue (12): 4608-4616.DOI: 10.11949/0438-1157.20190422
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Haidong YANG(),Qiang CHEN(),Kangkang XU,Chengjiu ZHU
Received:
2019-04-23
Revised:
2019-09-18
Online:
2019-12-05
Published:
2019-12-05
Contact:
Qiang CHEN
通讯作者:
陈强
作者简介:
杨海东(1973—),男,博士,教授,基金资助:
CLC Number:
Haidong YANG, Qiang CHEN, Kangkang XU, Chengjiu ZHU. Thermal efficiency research of regenerator for horseshoe flame glass furnace based on numerical simulation[J]. CIESC Journal, 2019, 70(12): 4608-4616.
杨海东, 陈强, 徐康康, 朱成就. 基于数值模拟的马蹄焰玻璃窑蓄热室热效率研究[J]. 化工学报, 2019, 70(12): 4608-4616.
Add to citation manager EndNote|Ris|BibTeX
能源输入 | 能源输出 | ||||
---|---|---|---|---|---|
序号 | 名称 | 符号 | 序号 | 名称 | 符号 |
1 | 烟气供应的热量 | Q g , in | 1 | 助燃空气带走的热量 | Q a , out |
2 | 漏入空气带入热量 | Q a ,l | 2 | 烟气带走热量 | Q g , out |
3 | 助燃空气带入的热量 | Q a , in | 3 | 墙壁及格子体的热损失 | Q loss |
Table 1 Heat balance of regenerator
能源输入 | 能源输出 | ||||
---|---|---|---|---|---|
序号 | 名称 | 符号 | 序号 | 名称 | 符号 |
1 | 烟气供应的热量 | Q g , in | 1 | 助燃空气带走的热量 | Q a , out |
2 | 漏入空气带入热量 | Q a ,l | 2 | 烟气带走热量 | Q g , out |
3 | 助燃空气带入的热量 | Q a , in | 3 | 墙壁及格子体的热损失 | Q loss |
项目 | α 1 | α 2 | α 3 | α 4 |
---|---|---|---|---|
助燃空气 | 969.1724 | 0.06781 | 0.0001656 | -0.000000067797 |
烟气 | 1042 | 0.2333 | 0.0033 | -0.000001224 |
Table 2 Specific heat capacity coefficient of fluid in regenerator
项目 | α 1 | α 2 | α 3 | α 4 |
---|---|---|---|---|
助燃空气 | 969.1724 | 0.06781 | 0.0001656 | -0.000000067797 |
烟气 | 1042 | 0.2333 | 0.0033 | -0.000001224 |
项目 | 进口边界 | 出口边界 | 初始速度/(m/s) | 初始温度/K | 水力直径/mm |
---|---|---|---|---|---|
冷却期 | 烟道口 | 小炉口 | 3.2 | 300 | 140000 |
加热期 | 小炉口 | 烟道口 | 11.5 | 1710 | 75000 |
Table 3 Boundary condition setting
项目 | 进口边界 | 出口边界 | 初始速度/(m/s) | 初始温度/K | 水力直径/mm |
---|---|---|---|---|---|
冷却期 | 烟道口 | 小炉口 | 3.2 | 300 | 140000 |
加热期 | 小炉口 | 烟道口 | 11.5 | 1710 | 75000 |
高度/m | 助燃空气 | 烟气 | ||||
---|---|---|---|---|---|---|
计算值/K | 测量值/K | 相对误差/% | 计算值/K | 测量值/K | 相对误差/% | |
0 | 314.05 | 336.283 | 7.08 | 649.819 | 627.215 | 3.48 |
0.932 | 318.285 | 342.166 | 7.50 | 653.8342 | 632.03 | 3.33 |
1.431 | 369.7688 | 371.637 | 0.51 | 660.0112 | 640.212 | 3.00 |
2.929 | 593.2917 | 551.148 | 7.10 | 755.037 | 707.28 | 6.33 |
3.234 | 639.9325 | 604.107 | 5.60 | 795.2333 | 752.325 | 5.40 |
4.733 | 886.6022 | 883.041 | 0.40 | 1011.036 | 952.545 | 5.79 |
6.236 | 1106.313 | 1110.06 | 0.34 | 1210.864 | 1167.8 | 3.56 |
7.733 | 1320.603 | 1379.47 | 4.46 | 1416.951 | 1506.77 | 6.34 |
8.928 | 1475.839 | 1501.65 | 1.75 | 1576.296 | 1684.96 | 6.89 |
11.433 | 1523.976 | 1597.29 | 4.81 | 1665.53 | 1747.66 | 4.93 |
Table 4 Average temperature validation
高度/m | 助燃空气 | 烟气 | ||||
---|---|---|---|---|---|---|
计算值/K | 测量值/K | 相对误差/% | 计算值/K | 测量值/K | 相对误差/% | |
0 | 314.05 | 336.283 | 7.08 | 649.819 | 627.215 | 3.48 |
0.932 | 318.285 | 342.166 | 7.50 | 653.8342 | 632.03 | 3.33 |
1.431 | 369.7688 | 371.637 | 0.51 | 660.0112 | 640.212 | 3.00 |
2.929 | 593.2917 | 551.148 | 7.10 | 755.037 | 707.28 | 6.33 |
3.234 | 639.9325 | 604.107 | 5.60 | 795.2333 | 752.325 | 5.40 |
4.733 | 886.6022 | 883.041 | 0.40 | 1011.036 | 952.545 | 5.79 |
6.236 | 1106.313 | 1110.06 | 0.34 | 1210.864 | 1167.8 | 3.56 |
7.733 | 1320.603 | 1379.47 | 4.46 | 1416.951 | 1506.77 | 6.34 |
8.928 | 1475.839 | 1501.65 | 1.75 | 1576.296 | 1684.96 | 6.89 |
11.433 | 1523.976 | 1597.29 | 4.81 | 1665.53 | 1747.66 | 4.93 |
1 | 李骏 . 马蹄焰玻璃窑能耗建模与局部能耗标杆研究[D]. 广州: 广东工业大学, 2018. |
Li J . Research on energy consumption modeling and local energy consumption benchmarking of horseshoe flame glass furnace[D]. Guangzhou: Guangdong University of Technology, 2018. | |
2 | 姜梦一 . 基于改进粒子群算法的马蹄焰玻璃窑能效优化方法研究[D]. 广州: 广东工业大学, 2018. |
Jiang M Y . Energy efficiency optimization of horseshoe flame glass kiln based on improved particle swarm optimization algorithm[D]. Guangzhou: Guangdong University of Technology, 2018. | |
3 | Sardeshpande V , Gaitonde U N , Banerjee R . Model based energy benchmarking for glass furnace[J]. Energy Conversion and Management, 2007, 48(10): 2718-2738. |
4 | Ponsich A , Azzaro-Pantel C , Domenech S , et al . A systemic approach for glass manufacturing process modeling[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(8): 1310-1320. |
5 | 刘颖, 刘义平, 陶曙明, 等 . 填充球蓄热室内传热与流动过程数值模拟及结构优化[J]. 中南大学学报(自然科学版), 2015, 46(6): 1981-1988. |
Liu Y , Liu Y P , Tao S M , et al . Structural optimization and numerical simulation of heat transfer and gas flow of ball-packed bed regenerative chamber[J]. Journal of Central South University (Science and Technology), 2015, 46(6): 1981-1988. | |
6 | 李阳, 陈杰 . 全氧燃烧玻璃熔池玻璃液的数值模拟[J]. 硅酸盐通报, 2014, 33(11): 3050-3053. |
Li Y , Chen J . Numerical simulation of oxy-fuel glass tanky glass flow[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(11): 3050-3053. | |
7 | Skiepko T , Shah R K . Modeling and effect of leakages on heat transfer performance of fixed matrix regenerators[J]. International Journal of Heat and Mass Transfer, 2005, 48(8): 1608-1632. |
8 | Fedorov A G , Pilon L . Glass foams: formation, transport properties, and heat, mass, and radiation transfer[J]. Journal of Non-Crystalline Solids, 2002, 311(2): 154-173. |
9 | 王杰曾, 刘锡俊 . 玻璃窑用耐火材料的发展方向[J]. 耐火材料, 2017, 51(2): 81-86. |
Wang J Z , Liu X J . Development direction of refractories for glass furnace[J]. Refractories, 2017, 51(2): 81-86. | |
10 | 沈锦林, 张勇, 宋晨路 . 玻璃熔窑筒型砖蓄热室三维数值模拟[J]. 材料科学与工程学报, 2003, 21(4): 475-478. |
Shen J L , Zhang Y , Song C L . Three-dimensional numerical simulation of chimney checkers for glass furnace regenerator[J]. Journal of Materials Science and Engineering, 2003, 21(4): 475-478. | |
11 | 祁霞, 戴方钦 . 蓄热小球填充床的气体阻力特性[J]. 过程工程学报, 2015, 15(5): 770-773. |
Qi X , Dai F Q . Gas resistance characteristics of a heat storage packed ball bed[J]. The Chinese Journal of Process Engineering, 2015, 15(5): 770-773. | |
12 | Sardeshpande V , Anthony R , Gaitonde U N , et al . Performance analysis for glass furnace regenerator[J]. Applied Energy, 2011, 88(12): 4451-4458. |
13 | El-Behery S M , Hussien A A , Kotb H , et al . Performance evaluation of industrial glass furnace regenerator[J]. Energy, 2017, 119: 1119-1130. |
14 | Wołkowycki G . Experimental results on the fixed matrix regenerator effectiveness for a glass stove furnace[J]. Heat Transfer Engineering, 2016, 37(6): 591-602. |
15 | 吕树欣, 刘涌, 宋晨路, 等 . 基于火焰空间与玻璃液热耦合的玻璃熔窑数值模拟[J]. 材料科学与工程学报, 2012, 30(1): 25-30. |
Lyu S X , Liu Y , Song C L , et al . Computational study of glass furnace based on thermal coupling between combustion space and liquid glass pool[J]. Journal of Materials Science and Engineering, 2012, 30(1): 25-30. | |
16 | Leyla R , Hamid N , Ehsan E B , et al . Thermal management of a distribution transformer: an optimization study of the cooling system using CFD and response surface methodology[J]. International Journal of Electrical Power & Energy Systems, 2019, 104: 443-455. |
17 | 徐烨琨, 刘成, 李永辉 . 折流杆换热器的研究方法进展[J]. 化工进展, 2014, 33(7): 1671-1676. |
Xu Y K , Liu C , Li Y H . Progress of rod baffle heat exchanger[J]. Chemical Industry and Engineering Progress, 2014, 33(7): 1671-1676. | |
18 | 胡万玲, 王良璧 . 涡产生器翼高对管翅式换热器流动与传热的影响[J]. 化工学报, 2017, 68(S1): 169-177. |
Hu W L , Wang L B . Effect of height of winglet vortex generators on thermal hydrodynamic performance of tube bank fin heat exchanger[J]. CIESC Journal, 2017, 68(S1): 169-177. | |
19 | 李剑锐, 陈杰, 浦晖, 等 . 绕管式换热器壳侧降膜流动和相变传热的数值模拟[J]. 化工学报, 2015, 66(S2): 40-49. |
Li J R , Chen J , Pu H , et al . Simulation of falling film flow and heat transfer at shell-side of coil-wound heat exchanger[J]. CIESC Journal, 2015, 66(S2): 40-49. | |
20 | 傅鑫亮, 闫志勇 . 仿柳叶形静态混合器的流动及混合特性[J]. 化工学报, 2017, 68(12): 4600-4606. |
Fu X L , Yan Z Y . Flow and mixing characteristics in willow leaf-like static mixer[J]. CIESC Journal, 2017, 68(12): 4600-4606. | |
21 | Abbassi A , Khoshmanesh K . Numerical simulation and experimental analysis of an industrial glass melting furnace[J]. Applied Thermal Engineering, 2008, 28(5/6): 450-459. |
22 | Hrbek L , Kocourková P , Jebavá M , et al . Bubble removal and sand dissolution in an electrically heated glass melting channel with defined melt flow examined by mathematical modelling[J]. Journal of Non-Crystalline Solids, 2017, 456: 101-113. |
23 | 蔡建祥 . 混合蓄热室的三维数值模拟[D].杭州: 浙江大学, 2002. |
Cai J X . Three dimensional numerical simulation of mixed regenerator[D]. Hangzhou: Zhejiang University, 2002. | |
24 | Reboussin Y , Fourmigué J F , Marty P , et al . A numerical approach for the study of glass furnace regenerators[J]. Applied Thermal Engineering, 2005, 25(14/15): 2299-2320. |
25 | Basso D , Cravero C , Reverberi A , et al . CFD analysis of regenerative chambers for energy efficiency improvement in glass production plants[J]. Energies, 2015, 8(8): 8945-8961. |
26 | 蒋朝辉, 周刚, 张海峰, 等 . 顶燃式球式热风炉烧炉过程温度场建模[J]. 中南大学学报(自然科学版), 2018, 49(9): 2216-2224. |
Jiang Z H , Zhou G , Zhang H F , et al . Temperature distribution model for combustion process of hot blast stove of dome combustion ball type[J]. Journal of Central South University (Science and Technology), 2018, 49(9): 2216-2224. | |
27 | Reverberi A P , Fabiano B , Dovì V G . Use of inverse modelling techniques for the estimation of heat transfer coefficients to fluids in cylindrical conduits[J]. International Communications in Heat and Mass Transfer, 2013, 42: 25-31. |
28 | Ergun S . Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 48: 89-94. |
29 | Yu J , Zhang M , Fan W , et al . Study on performance of the ball packed-bed regenerator: experiments and simulation[J]. Applied Thermal Engineering, 2002, 22(6): 641-651. |
30 | Sayyaadi H , Aminian H R . Design and optimization of a non-TEMA type tubular recuperative heat exchanger used in a regenerative gas turbine cycle[J]. Energy, 2010, 35(4): 1647-1657. |
[1] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[4] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[5] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[6] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[7] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[8] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[9] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[10] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[11] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[12] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[13] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[14] | Kexin HUANG, Tong LI, Anqi LI, Mei LIN. Mode decomposition of flow field in T-junction with rotating impeller [J]. CIESC Journal, 2023, 74(7): 2848-2857. |
[15] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||