CIESC Journal ›› 2019, Vol. 70 ›› Issue (S2): 1-7.DOI: 10.11949/0438-1157.20190443

• Thermodynamics • Previous Articles     Next Articles

Theoretical study on critical properties of 4 kinds of binary systems

Nan ZHANG1(),Longxiang CHEN2,Peng HU1()   

  1. 1. Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, Anhui, China
    2. Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Jinjiang 362200, Fujian, China
  • Received:2019-04-28 Revised:2019-05-08 Online:2019-09-06 Published:2019-09-06
  • Contact: Peng HU

混合工质临界性质的推算研究

张楠1(),陈龙祥2,胡芃1()   

  1. 1. 中国科学技术大学热科学和能源工程系,安徽 合肥 230027
    2. 中国科学院海西研究院泉州装备制造研究所,福建 晋江 362200
  • 通讯作者: 胡芃
  • 作者简介:张楠(1994—),男,博士研究生,nanzh@mail.ustc.edu.cn
  • 基金资助:
    国家自然科学基金项目(51576187)

Abstract:

Five different methods were used to calculate the critical temperatures and critical pressures of four kinds of binary mixtures, and the accuracy of different methods in estimating critical properties of binary mixtures were studied. It is found that the critical properties calculated by the Peng-Robinson (PR) equation and the Soave-Redlich-Kwong (SRK) equation combined with critical judgement, which was proposed by Heidemann and Khalil, showed a good agreement with experimental data. And results calculated by the modified Chueh-Prausnitz (MCP) method, the Redlich-Kister method and the Radial Basis Function Neural Networks (RBFNN) were also in good agreement with experimental data. The maximum absolute deviations of the critical temperatures calculated by the PR equation, the SRK equation, the MCP method, the Redlich-Kister method, and the RBFNN are 1.82%, 1.73%, 0.95%, 0.17% and 0.20%, respectively. The maximum absolute deviations of the critical pressures calculated by the PR equation, the SRK equation, the MCP method, the Redlich-Kister method, and the RBFNN are 6.07%, 5.04%, 3.49%, 1.90% and 0.67%, respectively.

Key words: critical properties, binary mixtures, equation of state, neural network, thermodynamic properties

摘要:

采用五种不同的方法计算了四种不同二元混合工质的临界温度和临界压力,研究对比不同方法在推算二元混合临界性质时的精度。其中Peng-Robinson(PR)方程和Soave-Redlich-Kwong(SRK)方程,两种状态方程结合Heidemann等提出的临界点判据计算得到的临界参数与实验结果吻合较好。两种经验公式,改进的Chueh-Prausnitz(MCP)方法和Redlich-Kister方法,以及径向基函数神经网络(RBFNN)在计算混合工质的临界性质时也都有着较高的计算精度。对于临界温度的计算,PR方程、SRK方程、MCP方程、Redlich-Kister方程以及径向基函数神经网络计算结果的绝对平均偏差的最大值分别为1.82%、1.73%、0.95%、0.17%和0.20%。对于临界压力的计算,通过PR方程、SRK方程、MCP方程、Redlich-Kister方程以及径向基函数神经网络计算的绝对平均偏差的最大值分别为6.07%、5.04%、3.49%、1.90%以及0.67%。

关键词: 临界性质, 二元混合物, 状态方程, 神经网络, 热力学性质

CLC Number: