CIESC Journal ›› 2019, Vol. 70 ›› Issue (11): 4356-4362.DOI: 10.11949/0438-1157.20190491
• Energy and environmental engineering • Previous Articles Next Articles
Received:
2019-05-09
Revised:
2019-08-02
Online:
2019-11-05
Published:
2019-11-05
Contact:
Xiaoyi YANG
通讯作者:
杨晓奕
作者简介:
唐晓寒(1990—),男,博士研究生,基金资助:
CLC Number:
Xiaohan TANG, Xiaoyi YANG. Lipids extraction of Nannochloropsis and hydrothermal liquefaction of defatted Nannochloropsis[J]. CIESC Journal, 2019, 70(11): 4356-4362.
唐晓寒, 杨晓奕. 微拟球藻油脂萃取及脱脂藻水热液化[J]. 化工学报, 2019, 70(11): 4356-4362.
Add to citation manager EndNote|Ris|BibTeX
N/% | C/% | H/% | O/% | HHV/(MJ/kg) | 水分/% | 灰分/% |
---|---|---|---|---|---|---|
6.29±0.09 | 49.27± 0.93 | 7.27±0.12 | 37.17 | 20.5 | 3.14±0.06 | 8.90±0.32 |
Table 1 Ultimate and proximate analytical results of Nannochloropsis
N/% | C/% | H/% | O/% | HHV/(MJ/kg) | 水分/% | 灰分/% |
---|---|---|---|---|---|---|
6.29±0.09 | 49.27± 0.93 | 7.27±0.12 | 37.17 | 20.5 | 3.14±0.06 | 8.90±0.32 |
项目 | 微拟球藻 | 萃取溶剂 | ||||
---|---|---|---|---|---|---|
二氯甲烷 | 二氯甲烷-甲醇 | 二氯甲烷-甲醇(湿) | 甲醇(湿) | 甲醇 | ||
脂肪酸甲酯产率 /% | 15.91 | 56.52 | 43.36 | 42.62 | 13.08 | 29.68 |
脂肪酸甲酯回收率 /% | 13.61 | 57.70 | 32.33 | 13.95 | 44.32 |
Table 2 Fatty acid methyl ester yield and recovery in lipids extracted with different solvent system
项目 | 微拟球藻 | 萃取溶剂 | ||||
---|---|---|---|---|---|---|
二氯甲烷 | 二氯甲烷-甲醇 | 二氯甲烷-甲醇(湿) | 甲醇(湿) | 甲醇 | ||
脂肪酸甲酯产率 /% | 15.91 | 56.52 | 43.36 | 42.62 | 13.08 | 29.68 |
脂肪酸甲酯回收率 /% | 13.61 | 57.70 | 32.33 | 13.95 | 44.32 |
溶剂 | N /% | C /% | H /% | O /% | HHV / (MJ/kg) |
---|---|---|---|---|---|
二氯甲烷 | 1.16 | 75.18 | 10.59 | 13.08 | 38.2 |
二氯甲烷-甲醇 | 1.51 | 59.25 | 8.74 | 30.50 | 27.1 |
二氯甲烷-甲醇(湿) | 1.31 | 72.42 | 11.16 | 15.11 | 37.7 |
甲醇(湿) | 2.45 | 31.95 | 5.38 | 60.23 | 7.7 |
甲醇 | 1.56 | 50.15 | 7.59 | 40.70 | 20.5 |
Table 3 Element analysis of lipids extract
溶剂 | N /% | C /% | H /% | O /% | HHV / (MJ/kg) |
---|---|---|---|---|---|
二氯甲烷 | 1.16 | 75.18 | 10.59 | 13.08 | 38.2 |
二氯甲烷-甲醇 | 1.51 | 59.25 | 8.74 | 30.50 | 27.1 |
二氯甲烷-甲醇(湿) | 1.31 | 72.42 | 11.16 | 15.11 | 37.7 |
甲醇(湿) | 2.45 | 31.95 | 5.38 | 60.23 | 7.7 |
甲醇 | 1.56 | 50.15 | 7.59 | 40.70 | 20.5 |
溶剂 | N /% | C /% | H /% | O /% | HHV / (MJ/kg) |
---|---|---|---|---|---|
未脱脂藻 | 4.65 | 72.72 | 9.66 | 12.34 | 36.2 |
二氯甲烷 | 5.29 | 74.32 | 9.09 | 11.30 | 36.1 |
二氯甲烷-甲醇 | 6.68 | 74.83 | 9.03 | 9.46 | 36.5 |
二氯甲烷-甲醇(湿) | 6.40 | 74.23 | 8.97 | 10.41 | 36.0 |
甲醇(湿) | 5.44 | 76.18 | 9.54 | 8.84 | 37.8 |
甲醇 | 6.29 | 74.96 | 9.27 | 9.47 | 36.9 |
Table 4 Element analysis of bio-crudes
溶剂 | N /% | C /% | H /% | O /% | HHV / (MJ/kg) |
---|---|---|---|---|---|
未脱脂藻 | 4.65 | 72.72 | 9.66 | 12.34 | 36.2 |
二氯甲烷 | 5.29 | 74.32 | 9.09 | 11.30 | 36.1 |
二氯甲烷-甲醇 | 6.68 | 74.83 | 9.03 | 9.46 | 36.5 |
二氯甲烷-甲醇(湿) | 6.40 | 74.23 | 8.97 | 10.41 | 36.0 |
甲醇(湿) | 5.44 | 76.18 | 9.54 | 8.84 | 37.8 |
甲醇 | 6.29 | 74.96 | 9.27 | 9.47 | 36.9 |
1 | 朱顺妮, 刘芬, 樊均辉, 等.微藻生物能源研究现状及展望[J]. 新能源进展, 2018, (6): 467-474 |
ZhuS N, LiuF, FanJ H, et al. Research progress and prospect of microalgae bioenergy[J]. Advances in New and Renewable Energy, 2018, (6): 467-474. | |
2 | MataT M, MartinsA A, CaetanoN S. Microalgae for biodiesel production and other applications: a review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 217-232. |
3 | GonçalvesA L, PiresJ C M, SimõesM. Green fuel production: processes applied to microalgae[J]. Environmental Chemistry Letters, 2013, 11(4): 315-324. |
4 | MinowaT, YokoyamaS, KishimotoM, et al. Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction[J]. Fuel, 1995, 74(12): 1735-1738. |
5 | 曲磊, 崔翔, 杨海平, 等. 微藻水热液化制取生物油的研究进展[J]. 化工进展, 2018, 37(8): 2962-2969. |
QuL, CuiX, YangH P, et al. Review on the preparation of bio-oil by microalgae hydrothermal liquefaction[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 2962-2969. | |
6 | ChiaramontiD, PrussiM, BuffiM, et al. Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production[J]. Applied Energy, 2017, 185: 963-972. |
7 | 方丽娜, 陈宇, 刘娅, 等.藻类水热液化产物生物油分离纯化及组分分析[J]. 化工学报, 2015, 66(9): 3640-3648. |
FangL N, ChenY, LiuY, et al. Separation, purification and composition analysis of bio-oil from hydrothermal liquefaction of microalgae[J]. CIESC Journal, 2015, 66(9): 3640-3648. | |
8 | TianC, LiB, LiuZ, et al. Hydrothermal liquefaction for algal biorefinery: a critical review[J]. Renewable and Sustainable Energy Reviews, 2014, 38: 933-950. |
9 | ChistiY. Biodiesel from microalgae[J]. Biotechnology Advances, 2007, 25(3): 294-306. |
10 | RawatI, KumarR R, MutandaT, et al. Biodiesel from microalgae: a critical evaluation from laboratory to large scale production[J]. Applied Energy, 2013, 103: 444-467. |
11 | FuJ, YangC, WuJ, et al. Direct production of aviation fuels from microalgae lipids in water[J]. Fuel, 2015, 139: 678-683. |
12 | ChengJ, HuangR, YuT, et al. Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction[J]. Bioresource Technology, 2014, 151: 415-418. |
13 | BillerP, FriedmanC, RossA B. Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bio-products[J]. Bioresource Technology, 2013, 136: 188-195. |
14 | ZhuY, AlbrechtK O, ElliottD C, et al. Development of hydrothermal liquefaction and upgrading technologies for lipid-extracted algae conversion to liquid fuels[J]. Algal Research, 2013, 2(4): 455-464. |
15 | VardonD R, SharmaB K, BlazinaG V, et al. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis[J]. Bioresource Technology, 2012, 109: 178-187. |
16 | van WychenS, LaurensL M L. Determination of total lipids as fatty acid methyl esters (FAME) by in situ transesterification: NREL/TP-5100-60958 [R]. NREL, 2013. |
17 | TangX, ZhangC, LiZ, et al. Element and chemical compounds transfer in bio-crude from hydrothermal liquefaction of microalgae[J]. Bioresource Technology, 2016, 202: 8-14. |
18 | YuG, ZhangY, SchidemanL, et al. Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae[J]. Energy & Environmental Science, 2011, 4(11): 4587. |
19 | LewisT, NicholsP D, McMeekinT A. Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs[J]. Journal of Microbiological Methods, 2000, 43(2): 107-116. |
20 | HuangR, ChengJ, QiuY, et al. Using renewable ethanol and isopropanol for lipid transesterification in wet microalgae cells to produce biodiesel with low crystallization temperature[J]. Energy Conversion and Management, 2015, 105: 791-797. |
21 | TanziC D, VianM A, ChematF. New procedure for extraction of algal lipids from wet biomass: a green clean and scalable process[J]. Bioresource Technology, 2013, 134: 271-275. |
22 | ZhangC, TangX, YangX. Overcoming the cell wall recalcitrance of heterotrophic Chlorella to promote the efficiency of lipid extraction[J]. Journal of Cleaner Production, 2018, 198: 1224-1231. |
23 | BlighE, DyerW. A rapid method of total lipid extraction and purification[J]. Canadian Journal of Biochemistry and Physiology, 1958, 37: 911-917. |
24 | MataT M, MartinsA, CaetanoN S. Microalgae for biodiesel production and other applications: a review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 217-232. |
25 | YooG, MinS P, YangJ W, et al. Lipid content in microalgae determines the quality of biocrude and energy return on investment of hydrothermal liquefaction[J]. Applied Energy, 2015, 156: 354-361. |
26 | 张冀翔, 蒋宝辉, 王东, 等.微藻水热液化生物油化学性质与表征方法综述[J]. 化工学报, 2016, 67(5): 1644-1653. |
ZhangJ X, JiangB H, WangD, et al. Chemical properties and characterization methods for hydrothermal liquefaction bio-crude from microalgae: a review[J]. CIESC Journal, 2016, 67(5): 1644-1653. | |
27 | TorriC, AlbaL G, SamorìC, et al. Hydrothermal treatment (HTT) of microalgae: detailed molecular characterization of HTT oil in view of HTT mechanism elucidation[J]. Energy & Fuels, 2012, 26(1): 658-671. |
28 | AlbaL G, TorriC, SamorìC, et al. Hydrothermal treatment (HTT) of microalgae: evaluation of the process as conversion method in an algae biorefinery concept[J]. Energy & Fuels, 2012, 26(1): 642-657. |
29 | ChangiS, BrownT M, SavageP E. Reaction kinetics and pathways for phytol in high-temperature water[J]. Chemical Engineering Journal, 2012, 189/190(5): 336-345. |
30 | YangW, LiX, LiZ, et al. Understanding low-lipid algae hydrothermal liquefaction characteristics and pathways through hydrothermal liquefaction of algal major components: crude polysaccharides, crude proteins and their binary mixtures[J]. Bioresource Technology, 2015, 196: 99-108. |
[1] | Jiaren ZHANG, Haichao LIU. Phase equilibrium of transesterification reaction system between soybean oil and methanol [J]. CIESC Journal, 2022, 73(5): 1920-1929. |
[2] | YAN Beibei, WANG Jian, LIU Bin, CHEN Guanyi, CHENG Zhanjun. Research progress of bio-oil metal hydrothermal in-situ hydrogenation technology [J]. CIESC Journal, 2021, 72(4): 1783-1795. |
[3] | Ze ZHANG, Jun CHENG, Yi QIU, Hao GUO, Weijuan YANG, Jianzhong LIU. Hydrodeoxygenation and hydrocracking to produce jet biofuel catalyzed by mesoporous zeolite desilicated with NaOH treatment [J]. CIESC Journal, 2019, 70(8): 2919-2927. |
[4] | SUN Peiyong, WANG Haixing, ZHOU Yupeng, ZHANG Shenghong, YAO Zhilong. Production of bio-olefins from fatty acid methyl esters via hydrodeoxygenation and sequential steam cracking [J]. CIESC Journal, 2018, 69(6): 2496-2502. |
[5] | CAI Wenjing, YAN Hao, FENG Xiang, LIU Yibin, YANG Chaohe. Product distribution in catalytic cracking of fatty acid methyl esters with different carbon chain lengths [J]. CIESC Journal, 2017, 68(5): 2057-2065. |
[6] | ZHANG Jixiang, JIANG Baohui, WANG Dong, WEI Yaodong. Chemical properties and characterization methods for hydrothermal liquefaction bio-crude from microalgae: a review [J]. CIESC Journal, 2016, 67(5): 1644-1653. |
[7] | WANG Wen, YANG Kang, ZHU Shunni, FENG Jia, SHANG Changhua, WANG Zhongming, YUAN Zhenhong, ZHUANG Xinshu, HU Lei. Cell growth and fatty acid production of heterotrophic microalgae Chlorella sp. cultivated in enzymatic hydrolyzate of sugarcane bagasse [J]. CIESC Journal, 2016, 67(4): 1549-1556. |
[8] | WANG Yantao, LI Kunlan, MA Yingchong, WEI Ligang, WANG Junmei, WANG Xin. Catalytic performance of [C16H33N(CH3)3]3[PO4(WO3)4] in fatty acid methyl ester epoxidation [J]. , 2015, 66(3): 1007-1011. |
[9] | DING Ranran, WU Yulong, CHEN Yu, DUAN Yanan, YANG Mingde. Recent advances on catalytic deoxygenation upgrading of liquefaction microalgae bio-oil [J]. CIESC Journal, 2014, 65(7): 2685-2695. |
[10] | ZHANG Zhiliang,JI Jianbing. Research progress of feedstocks and deep-processing technologies for biodiesel [J]. Chemical Industry and Engineering Progree, 2014, 33(11): 2909-2915. |
[11] | ZHENG Jilu, KONG Yongping. Hydrothermal liquefaction of waste meat for liquid fuel [J]. CIESC Journal, 2014, 65(10): 4150-4156. |
[12] | SHI Lei,YANG Junhong,KANG Ligai,LUO Mengyuan,ZUO Pengpeng,GONG Qitao. Effects of different aeration intervals on biomass accumulation of Chlorella vulgaris [J]. Chemical Industry and Engineering Progree, 2014, 33(10): 2735-2738. |
[13] | JIANG Jiawei1,CHENG Lihua1,XU Xinhua1,ZHANG Lin2,CHEN Huanlin2. Intensified technology for microalgal CO2 fixation and conversion from flue gas [J]. Chemical Industry and Engineering Progree, 2014, 33(07): 1884-1894. |
[14] | YIN Jing,LU Wenyu,CAIYIN Qinggele. Progress of enzymatic and microalgal carbon dioxide fixation [J]. Chemical Industry and Engineering Progree, 2013, 32(11): 2535-2542. |
[15] | WANG Nengfei 1,2,SUN Yunfei 2,3,WANG Shuchun2,YI Dan2,XU Bin2,WANG Fengqin3,ZANG Jiaye2. Screening and preliminary evaluation of oceanic microalgae for bioenergy production [J]. Chemical Industry and Engineering Progree, 2013, 32(10): 2366-2371. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||