[1] |
张百良, 宋华民, 李世欣. 生物能源发展及科技创新机遇[J]. 农业工程学报, 2008, 24(2): 285-289. ZHANG B L, SONG H M, LI S X. Biological energy development and scientific and technological innovation opportunity[J]. Transaction of the Chinese Society of Agricultural Engineering, 2008, 24(2): 285-289.
|
[2] |
王鹏照, 刘熠斌, 杨朝合. 我国餐厨废油资源化利用现状及展望[J]. 化工进展, 2014, 33(4): 1022-1029. WANG P Z, LIU Y B, YANG C H. Our kitchen waste resource utilization situation and prospects[J]. Chemical Industry and Engineering Progress, 2014, 33(4): 1022-1029.
|
[3] |
马冰, 张晶晶, 崔慧梅, 等. 油脂催化转化为绿色燃料的技术进展[J]. 中国科学: 化学, 2015, 45(4): 350-360. MA B, ZHANG J J, CUI H M, et al. Technical progress of oil catalytic into green fuel[J]. Scientia Sinica Chimica, 2015, 45(4): 350-360.
|
[4] |
翟西平, 殷长龙, 刘晨光. 油脂加氢制备第二代生物柴油的研究进展[J]. 石油化工, 2011, 40(12): 1364-1369. ZHAI X P, YIN C L, LIU C G. Research progress of oil hydrogenation to prepare the second generation of biodiesel[J]. Petrochemical Technology, 2011, 40(12): 1364-1369.
|
[5] |
YIGEZU Z D, MUTHUKUMAR K. Catalytic cracking of vegetable oil with metal oxides for biofuel production[J]. Energy Conversion & Management, 2014, 84(84): 326-333.
|
[6] |
PRADO C M R, FILHO N R A. Production and characterization of the biofuels obtained by thermal cracking and thermal catalytic cracking of vegetable oils[J]. Journal of Analytical & Applied Pyrolysis, 2009, 86(2): 338-347.
|
[7] |
DORONIN V P, POTAPENKO O V, LIPIN P V, et al. Catalytic cracking of vegetable oils for production of high-octane gasoline and petrochemical feedstock[J]. Petroleum Chemistry, 2012, 52(6): 392-400.
|
[8] |
BOTAS J A, SERRANO D P, GARCÍA A, et al. Catalytic conversion of rapeseed oil into raw chemicals and fuels over Ni- and Mo-modified nanocrystalline ZSM-5 zeolite[J]. Catalysis Today, 2012, 195(1): 59-70.
|
[9] |
DORONIN V P, POTAPENKO O V, LIPIN P V, et al. Conversion of vegetable oils under conditions of catalytic cracking[J]. Catalysis in Industry, 2014, 6(1): 53-59.
|
[10] |
LOVÁS P, HUDEC P, HADVINOVÁ M, et al. Conversion of rapeseed oil via catalytic cracking: effect of the ZSM-5 catalyst on the deoxygenation process[J]. Fuel Processing Technology, 2015, 134(5): 1348-1354.
|
[11] |
IDEM R O, KATIKANENI S P R, BAKHSHI N N. Catalytic conversion of canola oil to fuels and chemicals: roles of catalyst acidity, basicity and shape selectivity on product distribution[J]. Fuel Processing Technology, 1997, 51(1): 101-125.
|
[12] |
ADEBANJO A O, AND A K D, BAKHSHI N N. Production of diesel-like fuel and other value-added chemicals from pyrolysis of animal fat[J]. Energy Fuels, 2005, 19(4): 1735-1741.
|
[13] |
AHN E, MITTELBACH M, SMULDERS F J M, et al. The use of waste animal fats as feedstock for the production of an environmental friendly fuel for diesel engines (biodiesel)[J]. Food safety Assurance in the Pre-harvest Phase, 2002, 1: 342-345.
|
[14] |
MAHER K D, BRESSLER D C. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals[J]. Bioresource Technology, 2007, 98(12): 2351-2368.
|
[15] |
DANDIK L, AKSOY H A, ERDEM-SENATALAR A. Catalytic conversion of used oil to hydrocarbon fuels in a fractionating pyrolysis reactor[J]. Energy & Fuels, 1998, 12(6): 1148-1152.
|
[16] |
IDEM R O, KATIKANENI S P R, BAKHSHI N N. Thermal cracking of canola oil: reaction products in the presence and absence of steam[J]. Energy & Fuels, 1996, 10(6): 1150-1162.
|
[17] |
SCHWAB A W, DYKSTRA G J, SELKE E, et al. Diesel fuel from thermal decomposition of soybean oil[J]. Journal of the American Oil Chemists' Society, 1988, 65(11): 1781-1786.
|
[18] |
PRASAD Y S, BAKHSHI N N, MATHEWS J F, et al. Catalytic conversion of canola oil to fuels and chemical feedstocks(Part Ⅰ): Effect of process conditions on the performance of HZSM-5 catalyst[J]. The Canadian Journal of Chemical Engineering, 1986, 64(2): 278-284.
|
[19] |
KATIKANENI S P R, ADJAYE J D, BAKHSHI N N. Performance of aluminophosphate molecular sieve catalysts for the production of hydrocarbons from wood-derived and vegetable oils[J]. Energy & Fuels, 1995, 9(6): 1065-1078.
|
[20] |
TWAIQ F A, ZABIDI N A M, BHATIA S. Catalytic conversion of palm oil to hydrocarbons: performance of various zeolite catalysts[J]. Industrial & Engineering Chemistry Research, 1999, 38(9): 3230-3237.
|
[21] |
LI L, QUAN K, XU J, et al. Liquid hydrocarbon fuels from catalytic cracking of rubber seed oil using USY as catalyst[J]. Fuel, 2014, 123: 189-193.
|
[22] |
LI L, DING Z, LI K, et al. Liquid hydrocarbon fuels from catalytic cracking of waste cooking oils using ultrastable zeolite USY as catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2016, 117: 268-272.
|
[23] |
YAN R, YANG H, CHIN T, et al. Influence of temperature on the distribution of gaseous products from pyrolyzing palm oil wastes[J]. Combustion and Flame, 2005, 142(1): 24-32.
|
[24] |
GAYUBO A G, AGUAYO A T, ATUTXA A, et al. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite(Ⅰ): Alcohols and phenols[J]. Industrial & Engineering Chemistry Research, 2004, 43(11): 2610-2618.
|
[25] |
田华, 李春义, 杨朝合,等. 动物油在不同催化剂上的转化[J]. 催化学报, 2008, 29(1): 69-74. TIAN H, LI C Y, YANG C H, et al. The transformation of the fat on the different catalysts[J]. Chinese Journal of Catalysis, 2008, 29(1): 69-74.
|
[26] |
VONGHIA E, BOOCOCK D G B, KONAR S K, et al. Pathways for the deoxygenation of triglycerides to aliphatic hydrocarbons over activated alumina[J]. Energy & Fuels, 1995, 9(6): 1090-1096.
|
[27] |
PHUNG T K, CASAZZA A A, ALIAKBARIAN B, et al. Catalytic conversion of ethyl acetate and acetic acid on alumina as models of vegetable oils conversion to biofuels[J]. Chemical Engineering Journal, 2013, 215: 838-848.
|
[28] |
LEUNG A, BOOCOCK D G B, KONAR S K. Pathway for the catalytic conversion of carboxylic acids to hydrocarbons over activated alumina[J]. Energy & Fuels, 1995, 9(5): 913-920.
|