[1] |
吴才武, 夏建新. 地沟油的危害及其应对方法[J]. 食品工业, 2014, 35(3):237-240. WU C W, XIA J X. Hazards and resolve methods of illegal cooking oil[J]. Food Industry, 2014, 35(3):237-240.
|
[2] |
张家仁, 邓甜音, 刘海超. 油脂和木质纤维素催化转化制备生物液体燃料[J]. 化学进展, 2013, 25(2/3):192-208. ZHANG J R, DENG T Y, LIU H C. Catalytic production of liquid biofuels from triglyceride feedstocks and lignocellulose[J]. Progress in Chemistry, 2013, 25(2/3):192-208.
|
[3] |
YAAKOB Z, MOHAMMAD M, ALHERBAWI M, et al. Overview of the production of biodiesel from waste cooking oil[J]. Renewable and Sustainable Energy Reviews, 2013, 18:184-193.
|
[4] |
ISSARIYAKUL T, DALAI A K. Biodiesel from vegetable oils[J]. Renewable & Sustainable Energy Reviews, 2014, 31:446-471.
|
[5] |
李顶杰, 朱建军. 生物柴油产业的发展现状与对策建议[J]. 中国石油和化工经济分析, 2016, 9:39-42. LI D J, ZHU J J. Developing status and corresponding countermeasures for biodiesel industry in China[J]. Economic Analysis of China Petroleum and Chemical Industry, 2016, 9:39-42.
|
[6] |
MAHER K D, BRESSLER D C. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals[J]. Bioresource Technology, 2007, 98(12):2351-2368.
|
[7] |
罗俊, 邵敬爱, 杨海平, 等. 生物质催化热解制备低碳烯烃的研究进展[J]. 化工进展, 2017, 36(5):1555-1564. LUO J, SHAO J A, YANG H P, et al. Research progresses on production of light olefins from catalytic pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2017, 36(5):1555-1564.
|
[8] |
李振宇, 王红秋, 黄格省, 等. 我国乙烯生产工艺现状与发展趋势分析[J]. 化工进展, 2017, 36(3):767-773. LI Z Y, WANG H Q, HUANG G S, et al. Analysis on status and development trend of ethylene production technology in China[J]. Chemical Industry and Engineering Progress, 2017, 36(3):767-773.
|
[9] |
IDEM R O, KATITANENI S P R, BAKHSHI N N. Thermal cracking of canola oil: reaction products in the presence and absence of steam[J]. Energy & Fuels, 1996, 10(6):1150-1162.
|
[10] |
SADRAMELI S M, GREEN A E S. Systematics of renewable olefins from thermal cracking of canola oil[J]. Journal of Analytical and Applied Pyrolysis, 2007, 78(2):445-451.
|
[11] |
ZÁMOSTNÝ P, BěLOHLAV Z, ŠMIDRKAL J. Production of olefins via steam cracking of vegetable oils[J]. Resources, Conservation and Recycling, 2015, 59:47-51.
|
[12] |
DE BRUYCKER R, PYL S P, MARIE-FRANCOISE R, et al. Microkinetic model for the pyrolysis of methyl esters:from model compound to industrial biodiesel[J]. AIChE Journal, 2015, 61(12):4309-4322.
|
[13] |
臧俊娜. 植物油蒸汽裂解转化规律的研究[D]. 山东:中国石油大学(华东), 2010. ZANG J N. Studies on the conversion rule of vegetable oil by steam cracking[D]. Shandong:China University of Petroleum, 2010.
|
[14] |
韩蕾. 废弃油脂蒸汽裂解转化规律研究[D]. 山东:中国石油大学(华东), 2013. HAN L. Studies on the conversion rule of waste oil by steam cracking[D]. Shandong:China University of Petroleum, 2013.
|
[15] |
KATIKANENI S P R, ADJAYE J D, BAKHSHI N N. Catalytic conversion of canola oil to fuels and chemicals over various cracking catalysts[J]. The Canadian Journal of Chemical Engineering, 1995, 73(4):484-497.
|
[16] |
KATIKANENI S P R, ADJAYE J D, BAKHSHI N N. Studies on the catalytic conversion of canola oil to hydrocarbons:influence of hybrid catalysts and steam[J]. Energy & Fuels, 1995, 9(4):599-609.
|
[17] |
KATIKANENI S P R, ADJAYE J D, IDEM R O, et al. Catalytic conversion of canola oil over potassium-impregnated HZSM-5 catalysts: C2-C4 olefin production and model reaction studies[J]. Industrial & Engineering Chemistry Research, 1996, 35(10):3332-3346.
|
[18] |
VU H X, SCHNEIDER M, BENTRUP U, et al. Hierarchical ZSM-5 materials for an enhanced formation of gasoline-range hydrocarbons and light olefins in catalytic cracking of triglyceride-rich biomass[J]. Industrial & Engineering Chemistry Research, 2015, 54(6):1773-1782.
|
[19] |
蔡文静, 闫昊, 冯翔, 等. 不同碳链长度脂肪酸甲酯的催化裂化产物分布规律[J]. 化工学报, 2017, 68(5):2057-2065. CAI W J, YAN H, FENG X, et al. Product distribution in catalytic cracking of fatty acid methyl esters with different carbon chain lengths[J]. CIESC Journal, 2017, 68(5):2057-2065.
|
[20] |
BOTAS J A, SERRANO D P, GARCIA A, et al. Catalytic conversion of rapeseed oil for the production of raw chemicals, fuels and carbon nanotubes over Ni-modified nanocrystalline and hierarchical ZSM-5[J]. Applied Catalysis B:Environmental, 2014, 145:205-215.
|
[21] |
BOTAS J A, SERRANO D P, GARCIA A, et al. Catalytic conversion of rapeseed oil into raw chemicals and fuels over Ni-and Mo-modified nanocrystalline ZSM-5 zeolite[J]. Catalysis Today, 2012, 195(1):59-70.
|
[22] |
CHEN L G, LI H W, FU J Y, et al. Catalytic hydroprocessing of fatty acid methyl esters to renewable alkane fuels over Ni/HZSM-5 catalyst[J]. Catalysis Today, 2016, 259:266-276.
|
[23] |
KIJKMANS T, PYL S P, REYNIERS M F, et al. Production of bio-ethene and propene:alternatives for bulk chemicals and polymers[J]. Green Chemistry, 2013, 15(11):3064-3076.
|
[24] |
孙培永, 李梦晨, 刘森, 等. 油酸甲酯催化加氢制备生物烷烃的热力学分析[J]. 化工学报, 2017, 68(6):2258-2265. SUN P Y, LI M C, LIU S, et al. Thermodynamic analysis of catalytic hydrogenation of methyl oleate to produce bio-paraffins[J]. CIESC Journal, 2017, 68(6):2258-2265.
|
[25] |
SMEJKAL Q, SMEJKALOVA L, KUBICKA D. Thermodynamic balance in reaction system of total vegetable oil hydrogenation[J]. Chemical Engineering Journal, 2009, 146(1):155-160.
|
[26] |
GOSSELINK R W, HOLLAK S A W, CHANG S W, et al. Reaction pathways for the deoxygenation of vegetable oils and related model compounds[J]. ChemSusChem, 2013, 6(9):1576-1594.
|
[27] |
HERMIDA L, ABDULLAH A Z, MOHAMED A R. Deoxygenation of fatty acid to produce diesel-like hydrocarbons:a review of process conditions, reaction kinetics and mechanism[J]. Renewable & Sustainable Energy Reviews, 2015, 42:1223-1233.
|
[28] |
KUBICKA D, HORACEK J. Deactivation of HDS catalysts in deoxygenation of vegetable oils[J]. Applied Catalysis A:General, 2011, 394(1/2):9-17.
|
[29] |
孙培永, 刘森, 周玉鹏, 等. 镍铝合金催化油酸甲酯加氢饱和的热力学和动力学分析[J]. 中国油脂, 2017, 42(10):93-99. SUN P Y, LIU S, ZHOU Y P, et al. Thermodynamic and kinetics analysis of catalytic hydrogenation of methyl oleate over Ni-Al alloy[J]. China Oils and Fats, 2017, 42(10):93-99.
|
[30] |
刘纪昌, 沈本贤. 正构烷烃含量对裂解烯烃收率的影响及乙烯裂解的原料调配[J]. 华东理工大学学报(自然科学版), 2006, 32(5):535-539. LIU J C, SHEN B X. Effect of normal paraffin content on ethylene yield and feedstock allocation of ethylene pyrolysis process[J]. Journal of East China University of Science and Technology (Natural Science), 2006, 32(5):535-539.
|