CIESC Journal ›› 2021, Vol. 72 ›› Issue (4): 1783-1795.DOI: 10.11949/0438-1157.20201102
• Reviews and monographs • Previous Articles Next Articles
YAN Beibei1,2(),WANG Jian1,LIU Bin3,CHEN Guanyi4,5,CHENG Zhanjun1,2()
Received:
2020-08-03
Revised:
2020-09-21
Online:
2021-04-05
Published:
2021-04-05
Contact:
CHENG Zhanjun
颜蓓蓓1,2(),王建1,刘彬3,陈冠益4,5,程占军1,2()
通讯作者:
程占军
作者简介:
颜蓓蓓(1981—),女,博士,教授,基金资助:
CLC Number:
YAN Beibei, WANG Jian, LIU Bin, CHEN Guanyi, CHENG Zhanjun. Research progress of bio-oil metal hydrothermal in-situ hydrogenation technology[J]. CIESC Journal, 2021, 72(4): 1783-1795.
颜蓓蓓, 王建, 刘彬, 陈冠益, 程占军. 生物油金属水热原位加氢提质技术研究进展[J]. 化工学报, 2021, 72(4): 1783-1795.
Add to citation manager EndNote|Ris|BibTeX
1 | Vispute T P, Zhang H Y, Sanna A, et al. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils[J]. Science, 2010, 330(6008): 1222-1227. |
2 | Savage N. Fuel options: the ideal biofuel[J]. Nature, 2011, 474(7352): S9-S11. |
3 | Moore R H, Thornhill K L, Weinzierl B, et al. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions[J]. Nature, 2017, 543(7645): 411-415. |
4 | Wang H M, Male J, Wang Y. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds[J]. ACS Catalysis, 2013, 3(5): 1047-1070. |
5 | Bi Z T, Zhang J, Zhu Z Y, et al. Generating biocrude from partially defatted Cryptococcus curvatus yeast residues through catalytic hydrothermal liquefaction[J]. Applied Energy, 2018, 209: 435-444. |
6 | Miao C, Marin-Flores O, Dong T, et al. Hydrothermal catalytic deoxygenation of fatty acid and bio-oil with in situ H2[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4521-4530. |
7 | Cheng S Y, Wei L, James J, et al. Hydrodeoxygenation upgrading of pine sawdust bio-oil using zinc metal with zero valency[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74: 146-153. |
8 | Jin W, Pastor‐Pérez L, Shen D K, et al. Catalytic upgrading of biomass model compounds: novel approaches and lessons learnt from traditional hydrodeoxygenation—a review[J]. ChemCatChem, 2019, 11(3): 924-960. |
9 | Cheng S Y, Wei L, James J, et al. Upgrading pyrolysis bio-oil through hydrodeoxygenation (HDO) using non-sulfided Fe-Co/SiO2 catalyst[J]. Energy Conversion and Management, 2017, 150: 331-342. |
10 | Xu J M, Long F, Jiang J C, et al. Integrated catalytic conversion of waste triglycerides to liquid hydrocarbons for aviation biofuels[J]. Journal of Cleaner Production, 2019, 222: 784-792. |
11 | Liu W J, Zhang X S, Qu Y C, et al. Bio-oil upgrading at ambient pressure and temperature using zero valent metals[J]. Green Chemistry, 2012, 14(8): 2226-2233. |
12 | Xu Y, Long J X, Liu Q Y, et al. In situ hydrogenation of model compounds and raw bio-oil over Raney Ni catalyst[J]. Energy Conversion and Management, 2015, 89: 188-196. |
13 | Zhang Z H, Chen H, Wang C X, et al. Efficient and stable Cu-Ni/ZrO2 catalysts for in situ hydrogenation and deoxygenation of oleic acid into heptadecane using methanol as a hydrogen donor[J]. Fuel, 2018, 230: 211-217. |
14 | Miyata Y, Sagata K, Yamazaki Y, et al. Mechanism of the Fe-assisted hydrothermal liquefaction of lignocellulosic biomass[J]. Industrial & Engineering Chemistry Research, 2018, 57(44): 14870-14877. |
15 | Song J W, Yang Y, Yao G D, et al. Highly efficient synthesis of hydrogen storage material of formate from bicarbonate and water with general Zn powder[J]. Industrial & Engineering Chemistry Research, 2017, 56(22): 6349-6357. |
16 | Yang T H, Zhang W Q, Li R D, et al. Deoxy-liquefaction of corn stalk in subcritical water with hydrogen generated in situ via aluminum–water reaction[J]. Energy & Fuels, 2017, 31(9): 9605-9612. |
17 | Li R D, Li B S, Yang T H, et al. Hydrogenation of rice stalk in situ in supercritical ethanol–water co-solvent via catalytic ethanol steam reforming[J]. The Journal of Supercritical Fluids, 2018, 133: 309-317. |
18 | Park J Y, Jeon W, Lee J H, et al. Effects of supercritical fluids in catalytic upgrading of biomass pyrolysis oil[J]. Chemical Engineering Journal, 2019, 377:120312. |
19 | Jo H, Verma D, Kim J. Excellent aging stability of upgraded fast pyrolysis bio-oil in supercritical ethanol[J]. Fuel, 2018, 232:610-619. |
20 | Hosseinpour M, Soltani M, Noofeli A, et al. An optimization study on heavy oil upgrading in supercritical water through the response surface methodology (RSM)[J]. Fuel, 2020, 271: 117618. |
21 | Lin B J, Chen W H, Hsieh T H, et al. Oxidative reaction interaction and synergistic index of emulsified pyrolysis bio-oil/diesel fuels[J]. Renewable Energy, 2019, 136: 223-234. |
22 | Lian X, Xue Y, Zhao Z C, et al. Progress on upgrading methods of bio-oil: a review[J]. International Journal of Energy Research, 2017. 41(13): 1798-1816. |
23 | 陈尔旺, 陈明强, 王君, 等. 生物油分离技术的研究进展[J]. 广州化工, 2011, 39(3): 3-5, 45. |
Chen R W, Chen M Q, Wang J, et al. Research progress of bio-oil separation[J]. Guangzhou Chemical Industry, 2011, 39(3): 3-5, 45. | |
24 | 吕东灿, 刘运权, 王夺, 等. 生物油萃取分离技术的研究进展[J]. 化工进展, 2012, 31(7): 1425-1431. |
Lyu D C, Liu Y Q, Wang D, et al. Research progress in separation of bio-oils by extraction methods[J]. Chemical Industry and Engineering Progress, 2012, 31(7): 1425-1431. | |
25 | Li H, Yang S, Riisager A, et al. Zeolite and zeotype-catalysed transformations of biofuranic compounds[J]. Green Chemistry, 2016, 18(21): 5701-5735. |
26 | Wu J B, Zhu H Q, Wu Z W, et al. High Si/Al ratio HZSM-5 zeolite: an efficient catalyst for the synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene[J]. Green Chemistry, 2015, 17(4): 2353-2357. |
27 | Kurnia I, Karnjanakom S, Bayu A, et al. In-situ catalytic upgrading of bio-oil derived from fast pyrolysis of lignin over high aluminum zeolites[J]. Fuel Processing Technology, 2017, 167: 730-737. |
28 | Agarwal A, Park S J, Park J H. Catalytic upgrading of Kraft lignin derived bio-oil in supercritical ethanol over different crystal size hierarchical nano-HZSM5[J]. Fuel, 2020, 271: 117630. |
29 | Yang Z X, Kumar A, Huhnke R L. Review of recent developments to improve storage and transportation stability of bio-oil[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 859-870. |
30 | 王贤华, 陈汉平, 罗凯, 等. 提高生物油稳定性的方法[J]. 化工进展, 2006, 25(7): 765-769. |
Wang X H, Chen H P, Luo K, et al. Methods to improve the stability of bio-oil [J]. Chemical Industry and Engineering Progress, 2006, 25(7): 765-769. | |
31 | Zhang C, Jia C H, Cao Y, et al. Water-assisted selective hydrodeoxygenation of phenol to benzene over Ru composite catalyst in biphasic process[J]. Green Chemistry, 2019, 21(7): 1668-1679. |
32 | Jocz J N, Savage P E. Behavior of cholesterol and catalysts in supercritical water[J]. Energy & Fuels, 2016, 30(10): 7937-7946. |
33 | Ambursa M M, Ali T H, Voon L H, et al. Hydrodeoxygenation of dibenzofuran to bicyclic hydrocarbons using bimetallic Cu-Ni catalysts supported on metal oxides[J]. Fuel, 2016, 180(15): 767-776. |
34 | Zhang S Q, Yang X, Zheng K, et al. In-situ hydrogenation of furfural conversion to furfuryl alcohol via aqueous-phase reforming of methanol[J]. Applied Catalysis A, General, 2019, 581: 103–110. |
35 | Koichumanova K, Vikla A K K, Cortese R, et al. In situ ATR-IR studies in aqueous phase reforming of hydroxyacetone on Pt/ZrO2, and Pt/AlO(OH) catalysts: the role of aldol condensation[J]. Applied Catalysis B Environmental, 2018, 232: 454-463. |
36 | Vanesa D B, Concepcion H, Maria A L, et al. Coupling of glycerol-APR and in situ hydrodeoxygenation of fatty acid to produce hydrocarbons[J]. Fuel Processing Technology, 2019, 190: 21-28. |
37 | Zhang Z J, Wang Q W, Yang X L, et al. Sulfonic acid resin-catalyzed addition of phenols, carboxylic acids, and water to olefins: model reactions for catalytic upgrading of bio-oil[J]. Bioresource Technology, 2010, 101: 3685-3695. |
38 | 蒋恩臣, 史冬冬, 王明峰, 等. 生物油模型物糠醛催化加氢试验研究[J]. 农机化研究, 2017, 39(7):218-223. |
Jiang E C, Shi D D, Wang M F, et al. Experimental research on catalytic hydrogenation of bio-oil model compounds furfural[J]. Journal of Agricultural Mechanization Research, 2017, 39(7): 218-223. | |
39 | Zhou J P, Chen Z, Wang Y. Bioaldehydes and beyond: expanding the realm of bioderived chemicals using biogenic aldehydes as platforms[J]. Current Opinion in Chemical Biology, 2020, 59: 37-46. |
40 | He Z, Wang X Q. Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading[J]. Catalysis for Sustainable Energy, 2012, 1(1): 28-52. |
41 | Zhang J G, Yan N. Formic acid-mediated liquefaction of chitin[J]. Green Chemistry, 2016, 18: 5050–5058. |
42 | Wu K J, Yang M D, Chen Y, et al. Aqueous-phase ketonization of acetic acid over Zr/Mn mixed oxides[J]. AIChE Journal, 2017, 63(7): 2958-2967. |
43 | Elliott D C. Historical developments in hydroprocessing bio-oils[J]. Energy & Fuels, 2007, 21(3): 1792-1815. |
44 | Shaw A, Zhang X L. Density functional study on the thermal stabilities of phenolic bio-oil compounds[J]. Fuel, 2019, 255: 115732. |
45 | Guan Q Q, Huang X D, Liu J, et al. Supercritical water gasification of phenol using a Ru/CeO2 catalyst[J]. Chemical Engineering Journal, 2016, 283: 358-365. |
46 | Sun Z H, Fridrich B, Alessandra D S, et al. Bright side of lignin depolymerization: toward new platform chemicals[J]. Chemical Reviews, 2018, 118(2): 614-678. |
47 | Guan W X, Chen X, Jin S H, et al. Highly stable Nb2O5-Al2O3 composites supported Pt catalysts for hydrodeoxygenation of diphenyl ether[J]. Industrial & Engineering Chemistry Research, 2017, 56(47): 14034-14042. |
48 | Ambursa M M, Voon L H, Ching J J, et al. Catalytic hydrodeoxygenation of dibenzofuran to fuel graded molecule over mesoporous supported bimetallic catalysts[J]. Fuel, 2019, 236: 236-243. |
49 | Laborda F, Bolea E, Baranguan M T, et al. Hydride generation in analytical chemistry and nascent hydrogen: when is it going to be over?[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2002, 57(4): 797-802. |
50 | Fábos V, Yuen A K L, Masters A F, et al. Exploring the myth of nascent hydrogen and its implications for biomass conversions[J]. Chemistry-An Asian Journal, 2012, 7(11): 2629-2637. |
51 | Meija J, D'Ulivo A. Solution to nascent hydrogen challenge[J]. Analytical & Bioanalytical Chemistry, 2008, 392(5): 771-772. |
52 | Jin F M, Zeng X, Liu J K, et al. Highly efficient and autocatalytic H2O dissociation for CO2 reduction into formic acid with zinc[J]. Scientific Reports, 2014, 4: 4503. |
53 | Zeng X, Hatakeyama M, Ogata K, et al. New insights into highly efficient reduction of CO2 to formic acid by using zinc under mild hydrothermal conditions: a joint experimental and theoretical study[J]. Physical Chemistry Chemical Physics, 2014, 16(37): 19836-19840. |
54 | Cheng S Y, Wei L, Alsowij M R, et al. In situ hydrodeoxygenation upgrading of pine sawdust bio-oil to hydrocarbon biofuel using Pd/C catalyst[J]. Journal of the Energy Institute, 2018, 91(2): 163-171. |
55 | Sun Y F, Hu H J, Wang Y T, et al. In situ hydrogenation of CO2 by Al/Fe and Zn/Cu alloy catalysts under mild conditions[J]. Chemical Engineering & Technology, 2019, 42(6): 1223-1231. |
56 | Le Y, Zhong H, Yang Y, et al. Mechanism study of reduction of CO2 into formic acid by in-situ hydrogen produced from water splitting with Zn: Zn/ZnO interface autocatalytic role[J]. Journal of Energy Chemistry, 2017, 26(5): 936-941. |
57 | Yao G D, Duo J, Jin B B, et al. Highly-efficient and autocatalytic reduction of NaHCO3 into formate by in situ hydrogen from water splitting with metal/metal oxide redox cycle[J]. Journal of Energy Chemistry, 2017, 26(5): 881-890. |
58 | Miyata Y, Sagata K, Hirose M, et al. Fe-assisted hydrothermal liquefaction of lignocellulosic biomass for producing high-grade bio-oil[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3562-3569. |
59 | Yang T H, Wang J, Li B S, et al. Effect of residence time on two-step liquefaction of rice straw in a CO2 atmosphere: differences between subcritical water and supercritical ethanol[J]. Bioresource Technology, 2017, 229: 143-151. |
60 | Yang T H, Shi L P, Li R D, et al. Hydrodeoxygenation of crude bio-oil in situ in the bio-oil aqueous phase with addition of zero-valent aluminum[J]. Fuel Processing Technology, 2019, 184: 65-72. |
61 | Şenol O İ, Viljava T R, Krause A O I. Hydrodeoxygenation of aliphatic esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalyst: the effect of water[J]. Catalysis Today, 2005, 106(1/2/3/4): 186-189. |
62 | Laurent E, Delmon B. Influence of water in the deactivation of a sulfided NiMoγ-Al2O3 catalyst during hydrodeoxygenation[J]. Journal of Catalysis, 1994, 146(1): 281-291. |
63 | Li R D, Li B S, Kai X P, et al. Hydro-liquefaction of rice stalk in supercritical ethanol with in situ generated hydrogen[J]. Fuel Processing Technology, 2017, 167: 363-370. |
64 | Valdez P J, Savage P E. A reaction network for the hydrothermal liquefaction of Nannochloropsis sp.[J]. Algal Research, 2013, 2(4): 416-425. |
65 | Hietala D C, Faeth J L, Savage P E. A quantitative kinetic model for the fast and isothermal hydrothermal liquefaction of Nannochloropsis sp. [J]. Bioresource Technology, 2016, 214: 102-111. |
66 | Valdez P J, Nelson M C, Wang H Y, et al. Hydrothermal liquefaction of Nannochloropsis sp. : systematic study of process variables and analysis of the product fractions[J]. Biomass & Bioenergy, 2012, 46: 317-331. |
67 | Jena U, Das K C, Kastner J R. Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis[J]. Bioresource Technology, 2011, 102(10): 6221-6229. |
68 | Sharifzadeh M, Richard C J, Shah N. Modelling the kinetics of pyrolysis oil hydrothermal upgrading based on the connectivity of oxygen atoms, quantified by 31P-NMR[J]. Biomass & Bioenergy, 2017, 98: 272-290. |
69 | 李勇, 刘锦超, 芦鹏飞, 等. 从常温常压到超临界乙醇的分子动力学模拟[J]. 物理学报, 2010, 59(7):4880-4887. |
Li Y, Liu J C, Lu P F, et al. Molecular dynamic simulation of ethanol from ambient temperature and pressure to supercritical conditions[J]. Acta Physica Sinica, 2010, 59(7): 4880-4887. | |
70 | 吴方棣, 郑辉东, 刘俊劭, 等. 分子动力学模拟在化工中的应用进展[J]. 重庆理工大学学报(自然科学), 2013, 27(10): 59-65. |
Wu F D, Zheng H D, Liu J S, et al. Progress of molecular dynamic simulation in chemical engineering [J]. Journal of Chongqing University of Technology (Natural Science), 2013, 27(10): 59-65. | |
71 | van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons[J]. Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. |
72 | Rismiller S C, Groves M M, Meng M, et al. Water assisted liquefaction of lignocellulose biomass by ReaxFF based molecular dynamic simulations[J]. Fuel, 2018, 215: 835-843. |
73 | Liu X L, Li X X, Nie F G, et al. Initial reaction mechanism of bio-oil high-temperature oxidation simulated with reactive force field molecular dynamics[J]. Energy & Fuels, 2017, 31(2): 1608-1619. |
74 | Zhang M H, Geng Z F, Yu Y Z. Density functional theory (DFT) study on the dehydration of cellulose[J]. Energy & Fuels, 2011, 25(6): 2664-2670. |
75 | Zhou X W, Li W J, Mabon R, et al. A mechanistic model of fast pyrolysis of hemicellulose[J]. Energy & Environmental Science, 2018, 11: 1240-1260. |
76 | Huang J B, He C, Wu L Q, et al. Thermal degradation reaction mechanism of xylose: a DFT study[J]. Chemical Physics Letters, 2016, 658: 114-124. |
77 | Elder T, Beste A. Density functional theory study of the concerted pyrolysis mechanism for lignin models[J]. Energy & Fuels, 2014, 28(8): 5229-5235. |
78 | Yang X K, Li T, Tang, K, et al. Highly efficient conversion of terpenoid biomass to jet-fuel range cycloalkanes in a biphasic tandem catalytic process[J]. Green Chemistry, 2017, 19(15): 3566-3573. |
79 | Zapol P, Jaffe J B, Hess A C. Ab initio study of hydrogen adsorption on the ZnO (1010) surface[J]. Surface Science, 1999, 422: 1-7. |
[1] | Haihang TONG, Dezhi SHI, Jiayu LIU, Huayi CAI, Dan LUO, Fei CHEN. Research progress on dark fermentative bio-hydrogen production from lignocellulose assisted by metal nanoparticles [J]. CIESC Journal, 2022, 73(4): 1417-1435. |
[2] | JIANG Liqun,YUE Yuanmao,XU Lujiang,QIAN Le,LIU Shijun,ZHAO Zengli,LI Haibin,LIAO Yanfen. Pretreatments promote levoglucosan production from lignocellulose via fast pyrolysis [J]. CIESC Journal, 2021, 72(4): 1825-1832. |
[3] | ZHAO Jinzheng, ZHOU Guohui, LIU Xiaomin. Study on application and mechanism of ionic liquids in biomass dissolution and separation [J]. CIESC Journal, 2021, 72(1): 247-258. |
[4] | Laizhi SUN, Lei CHEN, Baofeng ZHAO, Shuangxia YANG, Xinping XIE, Fanjun MENG, Hongyu SI. Experiment research on catalytic fast pyrolysis of biomass into bio-oils over Mo/ZSM-5 catalyst [J]. CIESC Journal, 2019, 70(8): 3160-3166. |
[5] | Xiaohan TANG, Xiaoyi YANG. Lipids extraction of Nannochloropsis and hydrothermal liquefaction of defatted Nannochloropsis [J]. CIESC Journal, 2019, 70(11): 4356-4362. |
[6] | FENG Hualiang, GAO Jiaoqi, HOU Shengbo, LI Yimin, YUAN Wenjie. Effect of ORP regulation on fermentation by Kluyveromyces marxianus from lignocellulosic hydrolysates [J]. CIESC Journal, 2017, 68(11): 4279-4287. |
[7] | ZHANG Jixiang, JIANG Baohui, WANG Dong, WEI Yaodong. Chemical properties and characterization methods for hydrothermal liquefaction bio-crude from microalgae: a review [J]. CIESC Journal, 2016, 67(5): 1644-1653. |
[8] | ZHU Chenjie, DU Fengguang, YING Hanjie, OUYANG Pingkai. Catalytic production of liquid hydrocarbon fuels and fuel additives from lignocellulosic platform molecules [J]. CIESC Journal, 2015, 66(8): 2784-2794. |
[9] | HAO Xuemi, DU Bin, LIU Liyang, LIU Chenguang, BAI Fengwu. Effect of ORP regulation on yeast fermentation with inhibitors of lignocellulose hydrolysate [J]. CIESC Journal, 2015, 66(3): 1066-1071. |
[10] | ZHENG Jilu, KONG Yongping. Hydrothermal liquefaction of waste meat for liquid fuel [J]. CIESC Journal, 2014, 65(10): 4150-4156. |
[11] | SUN Fubao1,WANG Liang1,2,TAN Ling1,2,CAO Yu1,LIU Jianquan1,ZHANG Zhenyu1. Analytic technology of characterizing the substrate architecture in the Lignocellulose-to-sugar platform [J]. Chemical Industry and Engineering Progree, 2014, 33(04): 883-890. |
[12] | LIU Liyang, NIU Kun, LIU Chenguang, BAI Fengwu. Effect of ionic liquid pretreatment on lignocellulosic biomass from oilseeds [J]. CIESC Journal, 2013, 64(S1): 104-110. |
[13] | YANG Juan1, TENG Hu1, LIU Haijun2, XU Youhai2, Lü Jiping2, WANG Jiyan2. Feedstock pretreatment and technological process of cellulose ethanol production [J]. Chemical Industry and Engineering Progree, 2013, 32(01): 97-103. |
[14] | CUI Mei1,HUANG Renliang2,SU Rongxin2,QI Wei2,ZHANG Yimin1,HE Zhimin2. An overview on lignocellulose pretreatment and recalcitrant characteristics [J]. CIESC Journal, 2012, 63(3): 677-687. |
[15] | LI Zhiqiang,JIANG Zehui,FEI Benhua. Pretreatment technology of bamboo for bioethanol production:A review [J]. Chemical Industry and Engineering Progree, 2012, 31(03): 533-540. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||