1 |
何江, 苗建印, 张红星, 等. 航天器深低温热管技术研究现状及发展趋势[J]. 真空与低温, 2018, 24(1): 1-8.
|
|
HeJ, MiaoJ Y, ZhangH X, et al. Current status and development trend of cryogenic heat pipe technologies in spacecraft[J]. Vacuum and Cryogenics, 2018, 24(1): 1-8.
|
2 |
AkachiH, MiyazakiY. Stereo type heat lane heat sink[C]//10th International Heat Pipe Conference. Germany, 1997.
|
3 |
KhandekarS, GrollM, LuckchouraV. An introduction to pulsating heat pipe[J]. Electronics Cooling, 2003, 9 (2): 38-41.
|
4 |
XuJ L, LiY X, WongT Y. High speed flow visualization of a closed loop pulsating heat pipe[J]. International Journal of Heat Mass Transfer, 2005, (48): 3338-3351.
|
5 |
ShafiiM B, FaghriA, ZhangY. Thermal modeling of unlooped and looped pulsating heat pipe[J]. Journal of Heat Transfer, 2001, 123(6): 1159-1172.
|
6 |
李孝军, 屈健, 韩新月, 等. 微槽道脉动热管的启动及传热特性[J]. 化工学报, 2016, 67(6): 2263-2270.
|
|
LiX J, QuJ, HanX Y, et al. Start-up and heat transfer performance of micro-grooved oscillating heat pipe[J]. CIESC Journal, 2016, 67(6): 2263-2270.
|
7 |
孙芹, 屈健, 袁建平. 等截面和变截面通道硅基微型脉动热管传热特性比较[J]. 化工学报, 2017, 68(5): 1803-1810.
|
|
SunQ, QuJ, YuanJ P. Heat transfer performance comparison of silicon-based micro oscillating heat pipes with and without expanding channels[J]. CIESC Journal, 2017, 68(5): 1803-1810.
|
8 |
HanH, CuiX Y, ZhuY, et al. A comparative study of the behavior of working fluids and their properties on the performance of pulsating heat pipes(PHP)[J]. International Journal of Thermal Science, 2014, (82): 138-147.
|
9 |
屈健, 彭友权, 孙芹. 带平板蒸发器的紧凑型三维脉动热管传热特性[J]. 化工学报, 2018, 69(7): 2899-2907.
|
|
QuJ, PengY Q, SunQ. Heat transfer performance of three-dimensional oscillating heat pipe with flat-plate evaporator[J]. CIESC Journal, 2018, 69(7): 2899-2907.
|
10 |
郑开明, 徐荣吉, 王瑞祥, 等. 工质表面张力和黏度对脉动热管启动及传热热阻的影响[J]. 化工进展, 2017, 36(8): 2816-2821.
|
|
ZhengK M, XuR J, WangR X, et al. Influence of surface tension and viscosity on the start-up time and thermal resistance of pulsating heat pipe[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 2816-2821.
|
11 |
朱悦, 崔晓钰, 韩华, 等. 水、丙酮混合工质振荡热管传热性能[J]. 化工学报, 2014, 65(8): 2940-2947.
|
|
ZhuY, CuiX Y, HanH, et al. Heat transfer performance of pulsating heat pipes with water-acetone mixtures[J]. CIESC Journal, 2014, 65(8): 2940-2947.
|
12 |
KangS W, WangY C, LiuY C, et al. Visualization and thermal resistance measurements for a magnetic nanofluid pulsating heat pipe[J]. Applied Thermal Engineering, 2017, (126): 1044-1050.
|
13 |
纪玉龙, 庾春荣, 张庆振, 等. 表面浸润程度对脉动热管传热性能的影响[J]. 化工学报, 2017, 68(S1): 141-149.
|
|
JiY L, YuC R, ZhangQ Z, et al. Effect of surface wettability on heat transfer performance of oscillating heat pipe[J]. CIESC Journal, 2017, 68(S1): 141-149.
|
14 |
LiangG, MudawarI. Review of pool boiling enhancement by surface modification[J]. International Journal of Heat and Mass Transfer, 2019, 128: 892-933.
|
15 |
TakataY, HidakaS, CaoJ M, et al. Effect of surface wettability on boiling and evaporation[J]. Energy, 2005, (30): 209-220.
|
16 |
赵楠楠, 付本威, 马鸿斌, 等. 超声波对脉动热管传热影响的实验研究[J]. 工程热物理学报, 2015, (4): 829-932.
|
|
ZhaoN N, FuB W, MaH B, et al. Experimental study of ultraosound effect on the oscillating heat pipe[J]. Journal of Engineering Thermophysics, 2015, (4): 829-932.
|
17 |
ZhaoN, ZhaoD, MaH B. Ultrasonic effect on the startup of an oscillating heat pipe[J]. Journal of Heat Transfer, 2013, 135(7): 074503.
|
18 |
XianH Z, XuW J, ZhangY N, et al. Experimental investigations of dynamic fluid flow in oscillating heat pipe under pulse heating[J]. Applied Thermal Engineering, 2015, (88): 376-383.
|
19 |
徐德好, 陈陶菲. 机械振动对脉动热管传热性能影响实验研究[J]. 现代雷达, 2015, 37(4): 81-84.
|
|
XuD H, ChenT F. Experimental study on the heat transfer performance of PHP under vibration[J]. Modern Radar, 2015, 37(4): 81-84.
|
20 |
RidouaneE H, ChristopherM D, DarrenL H. A 2-D numerical study of chaotic flow in a nature convection loop[J]. International Journal of Heat and Mass Transfer, 2010, (53): 76-84.
|
21 |
LouisosW F, HittD L, DanforthC M. Chaotic flow in a 2D nature convection loop with heat flux boundaries[J]. International Journal of Heat and Mass Transfer, 2013, (61): 565-576.
|
22 |
刘建红, 邓涛, 白俊超, 等. 脉动热管激励机制强化传热数值研究[J]. 科技创新与应用, 2018, (4): 32-33.
|
|
LiuJ H, DengT, BaiJ C, et al. Numerical study on the heat transfer enhancement of excitation mechanism of pulsating heat pipes[J]. Technology Innovation and Application, 2018, (4): 32-33.
|
23 |
林梓荣. 自激式振荡热管热输送性能研究[D]. 广州: 华南理工大学, 2012.
|
|
LinZ R. Study on heat transfer performance of self-excited oscillation heat pipe[D]. Guangzhou: South China University of Technology, 2012.
|
24 |
王迅, 刘梦阳, 王盼, 等. 变管径单回路脉动热管传热特性数值研究[J]. 化学工程, 2018, 46(9): 32-36.
|
|
WangX, LiuM Y, WangP, et al. Numerical simulation on heat transfer characteristics of a single-loop pulsating heat pipe with variable diameters [J]. Chemical Engineering (China), 2018, 46(9): 32-36.
|
25 |
汪健生, 马赫. 蒸发/冷凝段长度比对脉动热管性能的影响[J]. 化工进展, 2015, 34(11): 3846-3851.
|
|
WangJ S, MaH. Influences of the ratio of evaporation section length to condensation section length on the performance of pulsating heat pipe[J]. Chemical Industry and Engineering Progress, 2015, 34(11): 3846-3851.
|
26 |
PouryoussefiS M, ZhangY W. Numerical investigation of chaotic flow in a 2D closed-loop pulsating heat pipe[J]. Applied Thermal Engineering, 2016, (98): 617-627.
|
27 |
TiwariM, DiwakarN. Experimental study and CFD based simulation of closed loop pulsating heat pipe using of refrigerants (R-134a)[J]. International Journal of Modern Engineering Research, 2016, (7): 53-61.
|
28 |
WangJ, MaH, ZhuQ, et al. Numerical and experimental investigation of pulsating heat pipes with corrugated configuration[J]. Applied Thermal Engineering, 2016, 102: 158-166.
|
29 |
FadhlB, WrobelL C, JouharaH. CFD modelling of a two-phase closed thermosyphon charged with R134a and R404a[J]. Applied Thermal Engineering, 2015, 78: 482-490.
|
30 |
SureshV J, BhramaraP. CFD analysis of copper closed loop pulsating heat pipe[J]. Materials Today: Proceedings , 2018, 5(2): 5487-5495.
|
31 |
WenH L. A pressure iteration scheme for two-phase flow modeling[M]//Computational Methods for Two-Phase Flow and Particle Transport. World Scientific, 1980: 61-82.
|