CIESC Journal ›› 2019, Vol. 70 ›› Issue (12): 4795-4803.DOI: 10.11949/0438-1157.20190663
• Energy and environmental engineering • Previous Articles Next Articles
Received:
2019-06-13
Revised:
2019-08-18
Online:
2019-12-05
Published:
2019-12-05
Contact:
Dezhen CHEN
通讯作者:
陈德珍
作者简介:
雷开元(1995—),男,硕士研究生,基金资助:
CLC Number:
Kaiyuan LEI, Dezhen CHEN. Water consumption and transfer during MSW pyrolysis char-vaporized pyrolysis oil reforming process[J]. CIESC Journal, 2019, 70(12): 4795-4803.
雷开元, 陈德珍. 生活垃圾热解半焦-热解油重整过程中水分的消耗与转移[J]. 化工学报, 2019, 70(12): 4795-4803.
Add to citation manager EndNote|Ris|BibTeX
Composition/%(mass) | Residue | HHV/(MJ/kg) | ||||
---|---|---|---|---|---|---|
Kitchen wastes | Paper | Cloth and fiber | Plastics | Wood | ||
14.23±0.88 | 6.32±0.27 | 27.54±1.14 | 22.44±0.98 | 3.42±0.41 | 26.05±1.03 | 15.77±0.21 |
Table 1 Composition of MSW sample(air dry basis)
Composition/%(mass) | Residue | HHV/(MJ/kg) | ||||
---|---|---|---|---|---|---|
Kitchen wastes | Paper | Cloth and fiber | Plastics | Wood | ||
14.23±0.88 | 6.32±0.27 | 27.54±1.14 | 22.44±0.98 | 3.42±0.41 | 26.05±1.03 | 15.77±0.21 |
Char | Liquid | Gas |
---|---|---|
44.21±0.79 | 33.12±0.75 | 22.67±0.64 |
Table 2 Product distribution of MSW pyrolysis at 550℃/%
Char | Liquid | Gas |
---|---|---|
44.21±0.79 | 33.12±0.75 | 22.67±0.64 |
Proximate analysis | Ultimate analysis | |||||
---|---|---|---|---|---|---|
A | V | FC | C | H | S | N |
41.74±1.01 | 11.05±0.77 | 47.21±1.23 | 41.39±1.12 | 1.19±0.12 | 0.71±0.09 | 1.07±0.11 |
Table 3 Proximate analysis and ultimate analysis of pyrolysis char(dry basis)/%(mass)
Proximate analysis | Ultimate analysis | |||||
---|---|---|---|---|---|---|
A | V | FC | C | H | S | N |
41.74±1.01 | 11.05±0.77 | 47.21±1.23 | 41.39±1.12 | 1.19±0.12 | 0.71±0.09 | 1.07±0.11 |
CaO | SiO2 | Fe2O3 | K2O | Al2O3 | P2O5 | MgO | Na2O | TiO2 |
---|---|---|---|---|---|---|---|---|
26.80 | 14.70 | 10.10 | 4.49 | 3.92 | 3.77 | 1.78 | 1.47 | 0.77 |
Table 4 Ash composition analysis of pyrolysis char(dry basis)/%(mass)
CaO | SiO2 | Fe2O3 | K2O | Al2O3 | P2O5 | MgO | Na2O | TiO2 |
---|---|---|---|---|---|---|---|---|
26.80 | 14.70 | 10.10 | 4.49 | 3.92 | 3.77 | 1.78 | 1.47 | 0.77 |
Experiment scenario | Reactant | Temperature/℃ | Liquid product | Gas product | Residue char |
---|---|---|---|---|---|
1 | water | 600 | RL1 | RG1 | RC1 |
2 | water | 700 | RL2 | RG2 | RC2 |
3 | water | 800 | RL3 | RG3 | RC3 |
4 | water +oil | 600 | RL4 | RG4 | RC4 |
5 | water +oil | 700 | RL5 | RG5 | RC5 |
6 | water +oil | 800 | RL6 | RG6 | RC6 |
7 | water +oil | 800 | RL7 | RG7 | — |
Table 5 Experimental design for oil reforming with pyrolysis char
Experiment scenario | Reactant | Temperature/℃ | Liquid product | Gas product | Residue char |
---|---|---|---|---|---|
1 | water | 600 | RL1 | RG1 | RC1 |
2 | water | 700 | RL2 | RG2 | RC2 |
3 | water | 800 | RL3 | RG3 | RC3 |
4 | water +oil | 600 | RL4 | RG4 | RC4 |
5 | water +oil | 700 | RL5 | RG5 | RC5 |
6 | water +oil | 800 | RL6 | RG6 | RC6 |
7 | water +oil | 800 | RL7 | RG7 | — |
Experiment scenario | Water/%(mass) | Oil/%(mass) | 液体反应率η/% | |
---|---|---|---|---|
1 | liquid | 100.00 | 0 | 3.21 |
RL1 | 93.40 | 6.60 | ||
2 | liquid | 100.00 | 0 | 6.70 |
RL2 | 92.60 | 7.40 | ||
3 | liquid | 100.00 | 0 | 8.98 |
RL3 | 95.00 | 5.00 | ||
4 | liquid | 40.00 | 60.00 | 48.93 |
RL4 | 47.30 | 52.70 | ||
5 | liquid | 40.00 | 60.00 | 65.34 |
RL5 | 63.60 | 36.40 | ||
6 | liquid | 40.00 | 60.00 | 78.68 |
RL6 | 82.00 | 18.00 | ||
7 | liquid | 40.00 | 60.00 | 11.37 |
RL7 | 44.20 | 55.80 |
Table 6 Comparison of water/oil and liquid reaction rate of experiment scenario
Experiment scenario | Water/%(mass) | Oil/%(mass) | 液体反应率η/% | |
---|---|---|---|---|
1 | liquid | 100.00 | 0 | 3.21 |
RL1 | 93.40 | 6.60 | ||
2 | liquid | 100.00 | 0 | 6.70 |
RL2 | 92.60 | 7.40 | ||
3 | liquid | 100.00 | 0 | 8.98 |
RL3 | 95.00 | 5.00 | ||
4 | liquid | 40.00 | 60.00 | 48.93 |
RL4 | 47.30 | 52.70 | ||
5 | liquid | 40.00 | 60.00 | 65.34 |
RL5 | 63.60 | 36.40 | ||
6 | liquid | 40.00 | 60.00 | 78.68 |
RL6 | 82.00 | 18.00 | ||
7 | liquid | 40.00 | 60.00 | 11.37 |
RL7 | 44.20 | 55.80 |
RC1 | RC2 | RC3 | RC4 | RC5 | RC6 |
---|---|---|---|---|---|
0.01393 | 0.02399 | 0.01774 | 0.005886 | 0.002704 | 0.002352 |
RL1 | RL2 | RL3 | RL4 | RL5 | RL6 |
0.04528 | 0.04455 | 0.04105 | 0.01860 | 0.02120 | 0.03056 |
Table 7 2H/1H (mol) in RL and RC
RC1 | RC2 | RC3 | RC4 | RC5 | RC6 |
---|---|---|---|---|---|
0.01393 | 0.02399 | 0.01774 | 0.005886 | 0.002704 | 0.002352 |
RL1 | RL2 | RL3 | RL4 | RL5 | RL6 |
0.04528 | 0.04455 | 0.04105 | 0.01860 | 0.02120 | 0.03056 |
Element | RC 1 | RC 2 | RC 3 | RC 4 | RC 5 | RC 6 |
---|---|---|---|---|---|---|
C | 40.11 | 35.78 | 30.31 | 39.35 | 36.50 | 33.44 |
H | 0.66 | 0.73 | 0.43 | 0.65 | 0.67 | 0.47 |
N | 1.37 | 1.46 | 1.54 | 1.81 | 1.64 | 1.71 |
S | 0.33 | 0.24 | 0.41 | 0.28 | 0.38 | 0.43 |
Element | RL 1 | RL 2 | RL 3 | RL 4 | RL 5 | RL 6 |
C | 59.11 | 63.12 | 60.11 | 63.11 | 62.74 | 65.75 |
H | 11.41 | 12.44 | 11.77 | 10.29 | 8.33 | 9.21 |
N | 3.22 | 2.01 | 0.44 | 0.37 | 0.42 | 0.33 |
S | 0.24 | 0.34 | 0.41 | 0.22 | 0.24 | 0.19 |
Table 8 Chemical analyses of organic components in RC and RL/%(mass)
Element | RC 1 | RC 2 | RC 3 | RC 4 | RC 5 | RC 6 |
---|---|---|---|---|---|---|
C | 40.11 | 35.78 | 30.31 | 39.35 | 36.50 | 33.44 |
H | 0.66 | 0.73 | 0.43 | 0.65 | 0.67 | 0.47 |
N | 1.37 | 1.46 | 1.54 | 1.81 | 1.64 | 1.71 |
S | 0.33 | 0.24 | 0.41 | 0.28 | 0.38 | 0.43 |
Element | RL 1 | RL 2 | RL 3 | RL 4 | RL 5 | RL 6 |
C | 59.11 | 63.12 | 60.11 | 63.11 | 62.74 | 65.75 |
H | 11.41 | 12.44 | 11.77 | 10.29 | 8.33 | 9.21 |
N | 3.22 | 2.01 | 0.44 | 0.37 | 0.42 | 0.33 |
S | 0.24 | 0.34 | 0.41 | 0.22 | 0.24 | 0.19 |
Retention time/min | Name | Content/%(area) |
---|---|---|
RL4 | ||
2.825 | benzene | 17.88 |
5.294 | toluene | 17.32 |
8.885 | ethylbenzene | 3.36 |
9.248 | benzene, 1, 3-dimethyl- | 2.08 |
9.303 | p-xylene | 1.33 |
10.077 | styrene | 10.32 |
13.551 | benzonitrile | 7.94 |
13.974 | benzene, 1-ethenyl-2-methyl- | 3.61 |
15.625 | 1H-indene, 1-chloro-2, 3-dihydro- | 2.98 |
16.050 | phenol, 2-methyl- | 1.17 |
16.386 | acetophenone | 3.68 |
16.775 | phenol, 3-methyl- | 2.04 |
19.114 | 2-methylindene | 1.57 |
19.316 | naphthalene | 1.52 |
20.185 | azulene | 6.58 |
23.449 | naphthalene, 2-methyl- | 3.02 |
25.740 | biphenyl | 1.96 |
RL5 | ||
2.824 | benzene | 2.63 |
5.293 | toluene | 2.84 |
9.245 | benzene, 1, 3-dimethyl- | 1.41 |
10.073 | styrene | 9.51 |
13.553 | benzonitrile | 5.07 |
13.972 | benzene, 1-ethenyl-3-methyl- | 1.98 |
15.623 | 1H-indene, 1-chloro-2, 3-dihydro- | 6.77 |
19.317 | naphthalene | 26.77 |
23.448 | naphthalene, 2-methyl- | 6.10 |
25.740 | biphenyl | 4.59 |
27.542 | biphenylene | 4.35 |
30.839 | fluorene | 2.05 |
35.275 | phenanthrene | 7.04 |
35.511 | anthracene | 2.10 |
39.159 | naphthalene, 2-phenyl- | 1.03 |
40.854 | fluoranthene | 2.21 |
41.841 | pyrene | 2.57 |
RL6 | ||
2.824 | benzene | 2.51 |
5.294 | toluene | 1.7 |
10.071 | styrene | 7.23 |
13.561 | benzonitrile | 1.91 |
15.617 | 1H-indene, 1-chloro-2, 3-dihydro- | 6.09 |
19.316 | naphthalene | 34.42 |
23.448 | naphthalene, 2-methyl- | 2.19 |
23.872 | naphthalene, 1-methyl- | 1.21 |
25.741 | biphenyl | 3.83 |
27.075 | naphthalene, 2-ethenyl- | 1.37 |
27.543 | biphenylene | 6.15 |
30.839 | fluorene | 2.08 |
35.28 | phenanthrene | 8.64 |
35.511 | anthracene | 2.30 |
39.159 | naphthalene, 2-phenyl- | 1.15 |
41.840 | pyrene | 3.36 |
47.581 | triphenylene | 2.20 |
Retention time/min | Name | Content/%(area) |
---|---|---|
RL4 | ||
2.825 | benzene | 17.88 |
5.294 | toluene | 17.32 |
8.885 | ethylbenzene | 3.36 |
9.248 | benzene, 1, 3-dimethyl- | 2.08 |
9.303 | p-xylene | 1.33 |
10.077 | styrene | 10.32 |
13.551 | benzonitrile | 7.94 |
13.974 | benzene, 1-ethenyl-2-methyl- | 3.61 |
15.625 | 1H-indene, 1-chloro-2, 3-dihydro- | 2.98 |
16.050 | phenol, 2-methyl- | 1.17 |
16.386 | acetophenone | 3.68 |
16.775 | phenol, 3-methyl- | 2.04 |
19.114 | 2-methylindene | 1.57 |
19.316 | naphthalene | 1.52 |
20.185 | azulene | 6.58 |
23.449 | naphthalene, 2-methyl- | 3.02 |
25.740 | biphenyl | 1.96 |
RL5 | ||
2.824 | benzene | 2.63 |
5.293 | toluene | 2.84 |
9.245 | benzene, 1, 3-dimethyl- | 1.41 |
10.073 | styrene | 9.51 |
13.553 | benzonitrile | 5.07 |
13.972 | benzene, 1-ethenyl-3-methyl- | 1.98 |
15.623 | 1H-indene, 1-chloro-2, 3-dihydro- | 6.77 |
19.317 | naphthalene | 26.77 |
23.448 | naphthalene, 2-methyl- | 6.10 |
25.740 | biphenyl | 4.59 |
27.542 | biphenylene | 4.35 |
30.839 | fluorene | 2.05 |
35.275 | phenanthrene | 7.04 |
35.511 | anthracene | 2.10 |
39.159 | naphthalene, 2-phenyl- | 1.03 |
40.854 | fluoranthene | 2.21 |
41.841 | pyrene | 2.57 |
RL6 | ||
2.824 | benzene | 2.51 |
5.294 | toluene | 1.7 |
10.071 | styrene | 7.23 |
13.561 | benzonitrile | 1.91 |
15.617 | 1H-indene, 1-chloro-2, 3-dihydro- | 6.09 |
19.316 | naphthalene | 34.42 |
23.448 | naphthalene, 2-methyl- | 2.19 |
23.872 | naphthalene, 1-methyl- | 1.21 |
25.741 | biphenyl | 3.83 |
27.075 | naphthalene, 2-ethenyl- | 1.37 |
27.543 | biphenylene | 6.15 |
30.839 | fluorene | 2.08 |
35.28 | phenanthrene | 8.64 |
35.511 | anthracene | 2.30 |
39.159 | naphthalene, 2-phenyl- | 1.15 |
41.840 | pyrene | 3.36 |
47.581 | triphenylene | 2.20 |
1 | 中华人民共和国国家统计局. 中国统计年鉴2018[M]. 北京: 中国统计出版社, 2018. |
National Bureau of Statistics of People s Republic of China. China Statistical Yearbook 2018[M]. Beijing: China Statistics Press, 2018. | |
2 | Chen D, Yin L, Wang H, et al. Reprint of: pyrolysis technologies for municipal solid waste: a review[J]. Waste Management, 2015, 37: 116-136. |
3 | Zhang Q, Chang J, Wang T, et al. Review of biomass pyrolysis oil properties and upgrading research [J]. Energy Conversion and Management, 2007, 48(1): 87-92. |
4 | Xie Y R, Shen L H, Xiao J, et al. Influences of additives on steam gasification of biomass(1): Pyrolysis procedure[J]. Energy & Fuels, 2009, 23(10): 5199-5205. |
5 | Azuara M, Fonts I, Bimbela F, et al. Catalytic post-treatment of the vapors from sewage sludge pyrolysis by means of γ-Al2O3: effect on the liquid product properties[J]. Fuel Processing Technology, 2015, 130: 252-262. |
6 | Huang Q, Lu P, Hu B, et al. Cracking of model tar species from the gasification of municipal solid waste using commercial and waste-derived catalysts[J]. Energy & Fuels, 2016, 30(7): 5740-5748. |
7 | 李佳珊. 城市生活垃圾热解过程中重金属残留实验研究[D]. 沈阳: 东北大学, 2009. |
Li J S. Experimental study on heavy metal residues in pyrolysis of municipal solid waste[D]. Shenyang: Northeastern University, 2009. | |
8 | Liu S, Yin W, Wu R, et al. Fundamentals of catalytic tar removal over in situ and ex situ chars in two-stage gasification of coal[J]. Energy & Fuels, 2014, 28(1): 58-66. |
9 | Min Z, Yimsiri P, Asadullah M, et al.Catalytic reforming of tar during gasification (Ⅱ): Char as a catalyst or as a catalyst support for tar reforming[J].Fuel, 2011, 90(7): 2545-2552. |
10 | Wang N, Chen D, Arena U, et al. Hot char-catalytic reforming of volatiles from MSW pyrolysis[J]. Applied Energy, 2017, 191: 111-124. |
11 | King H H, Stock L M. Aspects of the chemistry of donor solvent coal dissolution. The hydrogen-deuterium exchange reactions of tetralin-d12 with Illinois No. 6 coal, coal products and related compounds[J]. Fuel, 1982, 61(3): 257-264. |
12 | Cronauer D C, Mcneil R I, Young D C, et al. Hydrogen/deuterium transfer in coal liquefaction[J]. Fuel, 1982, 61(7): 610-619. |
13 | Brandes S D, Graff R A, Gorbaty M L, et al. Modification of coal by subcritical steam: an examination of modified Illinois No. 6 coal[J]. Energy & Fuels, 1989, 3(4): 494-498. |
14 | Wilson M A, Vassallo A M, Collin P J, et al. Deuterium as a tracer in coal liquefaction (2): Non-catalytic studies[J]. Fuel Processing Technology, 1984, 8(3): 213-229. |
15 | Collin P J, Wilson M A. Use of INEPT and GASPE n.m.r. pulse sequences: assignment of position of incorporation of deuterium into tetralin during coal hydrogenation[J]. Fuel, 1983, 62(11): 1243-1246. |
16 | Skowronski R P, Ratto J J, Goldberg I B, et al. Hydrogen incorporation during coal liquefaction[J]. Fuel, 1984, 63 (4): 440-448. |
17 | Wang L, Pan T, Liu P, et al. Hydrogen transfer route during hydrothermal treatment lignite using isotope tracer method and improving pyrolysis tar yield[J]. Energy & Fuels, 2016, 30(6): 121-134. |
18 | 连奕新, 杨意泉, 方维平. 钴钼基水煤气变换催化剂及其催化反应工艺[J].石油化工, 2011, 40(4): 347-357. |
Lian Y X, Yang Y Q, Fang W P. Cobalt-molybdenum-based water gas shift catalyst and catalytic reaction process thereof[J]. Petrochemical Industry, 2011, 40(4): 347-357. | |
19 | Lima A A G, Nele M, Moreno E L, et al. Composition effects on the activity of Cu-ZnO-Al2O3 based catalysts for the water gas shift reaction: a statistical approach[J]. Applied Catalysis A General, 1998, 171(1): 31-43. |
20 | Klinghoffer N B, Castaldi M J, Nzihou A. Influence of char composition and inorganics on catalytic activity of char from biomass gasification[J]. Fuel, 2015, 157: 37-47. |
21 | Badger G M, Kimber R W L, Spotswood T M. Mode of formation of 3, 4-benzopyrene in human environment[J]. Nature, 1960, 187(4738): 663-665. |
22 | Nelson P F, Smith I W, Tyler R J, et al. Pyrolysis of coal at high temperatures[J]. Energy & Fuels, 1988, 2(4): 391-400. |
23 | Stock L M, Wasielewski M R. The trifluoromethyl group in chemistry and spectroscopy. Carbon-fluorine hyperconjugation[M]//Taft R W. Progress in Physical Organic Chemistry. John Wiley & Sons, Inc., 1981: 253-313. |
24 | 翟建荣, 钟梅, 马凤云, 等. 水蒸气对煤焦油模化物裂解行为及析碳的影响[J]. 化工学报, 2019, 70(8): 2898-2908. |
Zhai J R, Zhong M, Ma F Y, et al. Effect of steam atmosphere on cracking behavior and carbon deposition of coal tar model compounds [J]. CIESC Journal, 2019, 70(8): 2898-2908. |
[1] | CUI Li, FAN Yuheng, LI Shasha, BAI Ruibing, GUO Yanxia, CHENG Fangqin. Research progress on the theory and new technology for separation of lithium isotopes by chemical exchange [J]. CIESC Journal, 2021, 72(6): 3215-3227. |
[2] | Xin HUANG,Yuxia LIN,Binghui YAN,Yueming LIU. Deactivated TS-1 as an efficient catalyst for catalytic cracking of butene to propene [J]. CIESC Journal, 2021, 72(10): 5183-5195. |
[3] | WANG Peng, GONG Xun, ZHANG Biao, LENG Erwei, CHEN Zhenguo, XU Minghou. Pyrolysis characteristics of cellulose from ionic liquid regeneration [J]. CIESC Journal, 2014, 65(12): 4793-4798. |
[4] | GAO Yunhu, XU Zhihong, YU Zhaojun, FEI Weiyang. Concentration distribution of deuterium and oxygen-18 and its influence in heavy-oxygen water separation cascade [J]. CIESC Journal, 2014, 65(1): 213-219. |
[5] | HU Yanjun, GUAN Zhichao, ZHENG Xiaoyan. Analysis on polycyclic aromatic hydrocarbons in pyrolysis oil from municipal wastewater sewage sludge [J]. CIESC Journal, 2013, 64(6): 2227-2231. |
[6] | GAO Zhen,XIONG Qiang,XU Qing,SONG Ping,LI Shuang. Application of metabolic flux analysis in enzyme synthesis [J]. Chemical Industry and Engineering Progree, 2013, 32(07): 1625-1628. |
[7] | WANG Xiaoying,LU Guangda,QIN Cheng,Lü Junbo. Current state and prospect of hydrogen isotope analysis by gas chromatography [J]. , 2011, 30(6): 1170-. |
[8] | WANG Hui,ZOU Ying,YU Feng,WENG Huixin . Distributions of chemical components in used tire pyrolysis oil [J]. , 2011, 30(3): 656-. |
[9] | ZHANG Xuehui1,2,CHEN Haisheng1,DOU Binlin3,TAN Chunqing1. Research progress in production,property and industrial application of bio-oil [J]. , 2011, 30(11): 2404-. |
[10] | GONG Ling,ZHOU Shaodong,CHEN Xinzhi. Research progress in hydrogen transfer reaction [J]. , 2010, 29(3): 478-. |
[11] | LAN Ping,XU Qingli,WU Ceng,YAN Yongjie. Advance in catalytic steam reforming of biomass fast pyrolysis oil for hydrogen production [J]. , 2009, 28(10): 1719-. |
[12] | BAI Peng,GUO Hongjie,LI Xiaofeng,WU Jun. Progress in boron isotopes separation by ion exchange chromatography [J]. , 2007, 26(2): 190-. |
[13] | ZHANGDonghui, ZHOULi, SUWei, SUNYan. Equilibrium Modeling for Hydrogen Isotope Separation by Cryogenic Adsorption [J]. , 2006, 14(4): 526-531. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||