CIESC Journal ›› 2019, Vol. 70 ›› Issue (12): 4804-4810.DOI: 10.11949/0438-1157.20190643
• Energy and environmental engineering • Previous Articles Next Articles
Zhiqiang TANG1,2(),Liang ZHANG1,2(),Xun ZHU1,2,Jun LI1,2,Qian FU1,2,Qiang LIAO1,2
Received:
2019-06-10
Revised:
2019-09-02
Online:
2019-12-05
Published:
2019-12-05
Contact:
Liang ZHANG
唐志强1,2(),张亮1,2(),朱恂1,2,李俊1,2,付乾1,2,廖强1,2
通讯作者:
张亮
作者简介:
唐志强(1995—),男,硕士研究生,基金资助:
CLC Number:
Zhiqiang TANG, Liang ZHANG, Xun ZHU, Jun LI, Qian FU, Qiang LIAO. Effect of Cu2+ concentration in cathode on power generation and copper removal of thermally regenerative ammonia-based battery[J]. CIESC Journal, 2019, 70(12): 4804-4810.
唐志强, 张亮, 朱恂, 李俊, 付乾, 廖强. 不同Cu2+浓度下热再生氨电池产电及Cu2+去除特性[J]. 化工学报, 2019, 70(12): 4804-4810.
Add to citation manager EndNote|Ris|BibTeX
1 | 阎中, 熊娅, 王凯军, 等. 诱导结晶工艺处理含铜废水[J]. 化工学报, 2009, 60(10): 2603-2608. |
Yan Z, Xiong Y, Wang K J, et al. Induction crystallization process for treatment of copper-containing wastewater[J]. CIESC Journal, 2009, 60(10): 2603-2608. | |
2 | 陈熙, 徐新阳, 赵冰, 等. 喷射床电沉积法处理铜镍混合废水[J]. 化工学报, 2015, 66(12): 5060-5066. |
Chen X, Xu X Y, Zhao B, et al. Treatment of copper-nickel mixed wastewater by spray bed electrodeposition[J]. CIESC Journal, 2015, 66(12): 5060-5066. | |
3 | 张厚, 施力匀, 杨春, 等. 电镀废水处理技术研究进展[J]. 电镀与精饰, 2018, (2): 36-41. |
Zhang H, Shi L J, Yang C, et al. Research progress in electroplating wastewater treatment technology[J]. Plating & Finishing, 2018, (2): 36-41. | |
4 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 铜、镍、钴工业污染物排放标准: GB 25467—2010[S]. 北京: 中国环境科学出版社, 2010. |
General Administration of Quality Supervision, Inspection and Quarantine of the People s Republic of China, Standardization Administration of the People s Republic of China. Copper, nickel and cobalt industrial pollutant discharge standards: GB 25467—2010[S]. Beijing: China Environmental Science Press, 2010. | |
5 | Adhoum N, Monser L, Bellakhal N, et al. Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(Ⅵ) by electrocoagulation[J]. J. Hazard. Mater., 2004, 112: 207-213. |
6 | Chiu H, Tsang K, Lee R. Treatment of electroplating wastes[J]. Water Pollut. Control (GB), 1987, 86: 12. |
7 | Peng C, Chai L, Tang C, et al. Study on the mechanism of copper-ammonia complex decomposition in struvite formation process and enhanced ammonia and copper removal[J]. Journal of Environmental Sciences, 2017, 51(1): 222. |
8 | Verma A, Bishnoi N R, Gupta A. Optimization study for Pb(Ⅱ) and COD sequestration by consortium of sulphate-reducing bacteria[J]. Applied Water Science, 2017, 7(5): 2309-2320. |
9 | Li H, Chen Y, Long J, et al. Simultaneous removal of thallium and chloride from a highly saline industrial wastewater using modified anion exchange resins[J]. Journal of Hazardous Materials, 2017, 333: 179-185. |
10 | Li X F, Shi S Y, Cao H B, et al. Comparative study of chromium(Ⅵ) removal from simulated industrial wastewater with ion exchange resins[J]. Russian Journal of Physical Chemistry A, 2018, 92(6): 1229-1236. |
11 | Lee C G, Lee S, Park J A, et al. Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam[J]. Chemosphere, 2017, 166: 203-211. |
12 | Park J A, Kang J K, Lee S C, et al. Electrospun poly(acrylic acid)/poly(vinyl alcohol) nanofibrous adsorbents for Cu(Ⅱ) removal from industrial plating wastewater[J]. RSC Advances, 2017, 7(29): 18075-18084. |
13 | Jesus J M S, Scarazzato T, Tenório J A S, et al. Permselectivity study of ion-exchange membranes in the presence of Cu-HEDP complexes from a copper plating wastewater treatment[M]// Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies. Springer International Publishing, 2017. |
14 | Chang S H. A comparative study of batch and continuous bulk liquid membranes in the removal and recovery of Cu(Ⅱ) ions from wastewater[J]. Water Air & Soil Pollution, 2018, 229(1): 22. |
15 | Sun H, Wang H, Wang H, et al. Enhanced removal of heavy metals from electroplating wastewater through electrocoagulation using carboxymethyl chitosan as corrosion inhibitor for steel anode[J]. Environmental Science: Water Research & Technology, 2018, 4(8): 1105-1113. |
16 | Min K J, Choi S Y, Jang D, et al. Separation of metals from electroplating wastewater using electrodialysis[J]. Energy Sources Part A Recovery Utilization and Environmental Effects, 2019, (3): 1-10. |
17 | Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review[J]. Journal of Environmental Management, 2011, 92(3): 407-418. |
18 | Xu P, Zeng G M, Huang D L, et al. Use of iron oxide nanomaterials in wastewater treatment: a review[J]. Science of the Total Environment, 2012, 424: 1-10. |
19 | Azmi A A, Jai J, Zamanhuri N A, et al. Precious metals recovery from electroplating wastewater: a review[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2018, 3581): 012024. |
20 | Yang Y, Lee S W, Ghasemi H, et al. Charging-free electrochemical system for harvesting low-grade thermal energy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(48): 17011-17016. |
21 | Rahimi M, Straub A P, Zhang F, et al. Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity[J]. Energy & Environmental Science, 2018, 11(2): 276-285. |
22 | Zhang F, Liu J, Yang W, et al. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power[J]. Energy Environ. Sci., 2015, 8(1): 343-349. |
23 | Zhang F, Labarge N, Yang W, et al. Enhancing low-grade thermal energy recovery in a thermally regenerative ammonia battery using elevated temperatures[J]. ChemSusChem, 2015, 8(6): 1043-1048. |
24 | Rahimi M, Angelo A D, Gorski C A, et al. Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery[J]. Journal of Power Sources, 2017, 351: 45-50. |
25 | Rahimi M, Kim T, Gorski C A, et al. A thermally regenerative ammonia battery with carbon-silver electrodes for converting low-grade waste heat to electricity[J]. Journal of Power Sources, 2018, 373: 95-102. |
26 | Rahimi M, Zhu L, Kowalski K L, et al. Improved electrical power production of thermally regenerative batteries using a poly(phenylene oxide) based anion exchange membrane[J]. Journal of Power Sources, 2017, 342: 956-963. |
27 | Zhu X, Rahimi M, Gorski C A, et al. A thermally-regenerative ammonia-based flow battery for electrical energy recovery from waste heat[J]. ChemSusChem, 2016, 9(8): 873-879. |
28 | 李彦翔, 张亮, 朱恂, 等. 传质对热可再生氨电池性能的影响[J]. 工程热物理学报, 2019, (3): 668-671. |
Li Y X, Zhang L, Zhu X, et al. Effect of mass transfer on the performance of thermally regenerative ammonia-based battery[J]. Journal of Engineering Thermophysics, 2019, (3): 668-671. | |
29 | Wang W, Shu G, Tian H, et al. A numerical model for a thermally-regenerative ammonia-based flow battery using for low grade waste heat recovery[J]. Journal of Power Sources, 2018, 388: 32-44. |
30 | 陈莎莎. 改进版分光光度法测定水中铜离子浓度[J]. 环球市场信息导报: 理论, 2014, (8): 224. |
Chen S S. Determination of copper ion concentration in water by improved spectrop-hotometry[J]. Global Market Information Herald: Theory, 2014, (8): 224. | |
31 | 杨润萍, 李晓霞, 丁磊, 等. 污染水中铜离子浓度的快速测定[J]. 中国卫生检验杂志, 2007, 17(12): 2217-2218. |
Yang R P, Li X X, Ding L, et al. Rapid determination of copper ion concentration in polluted water[J]. Chinese Journal of Health Laboratory Technology, 2007, 17(12): 2217-2218. | |
32 | Mollah M Y, Schennach R, Parga J R, et al. Electrocoagulation (EC)—science and applications.[J]. Journal of Hazardous Materials, 2001, 84(1): 29-41. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[5] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[6] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[7] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[8] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[9] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[10] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[11] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[12] | Yanmei ZHANG, Tao YUAN, Jiang LI, Yajie LIU, Zhanxue SUN. Study on the construction of high-efficient SRB mixed microflora and its performance under acid stress [J]. CIESC Journal, 2023, 74(6): 2599-2610. |
[13] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[14] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[15] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||