CIESC Journal ›› 2020, Vol. 71 ›› Issue (2): 475-486.DOI: 10.11949/0438-1157.20190815
• Reviews and monographs • Previous Articles Next Articles
Liuyi REN1,2,3,4(),Song ZHAO1,2,3,4,Zhi WANG1,2,3,4(
),Fangzheng YAN1,2,3,4,Yingying LIU1,2,3,4,Xianglei HAN1,2,3,4,Jixiao WANG1,2,3,4
Received:
2019-07-15
Revised:
2019-10-08
Online:
2020-02-05
Published:
2020-02-05
Contact:
Zhi WANG
任六一1,2,3,4(),赵颂1,2,3,4,王志1,2,3,4(
),燕方正1,2,3,4,刘莹莹1,2,3,4,韩向磊1,2,3,4,王纪孝1,2,3,4
通讯作者:
王志
作者简介:
任六一(1995—),男,硕士研究生, 基金资助:
CLC Number:
Liuyi REN, Song ZHAO, Zhi WANG, Fangzheng YAN, Yingying LIU, Xianglei HAN, Jixiao WANG. Research progress of antifouling aromatic polyamide reverse osmosis membrane[J]. CIESC Journal, 2020, 71(2): 475-486.
任六一, 赵颂, 王志, 燕方正, 刘莹莹, 韩向磊, 王纪孝. 抗污染芳香聚酰胺反渗透膜研究进展[J]. 化工学报, 2020, 71(2): 475-486.
1 | Elimelech M, Phillip W A. The future of seawater desalination: energy, technology, and the environment[J]. Science, 2011, 333( 6043): 712- 717. |
2 | Organization W H, Supply W U J W, Programme S M. Progress on Sanitation and Drinking Water: 2015 Update and MDG Assessment[M]. Geneva: World Health Organization, 2015. |
3 | 徐建国, 尹华. 海水淡化反渗透膜技术的最新进展及其应用[J]. 膜科学与技术, 2014, 34( 2): 99- 105. |
Xu J G, Yin H. Latest progress and applications of seawater RO membrane technology[J]. Membrane Science and Technology, 2014, 34( 2): 99- 105. | |
4 | Tong T Z, Wallace A F, Zhao S, et al. Mineral scaling in membrane desalination: mechanisms, mitigation strategies, and feasibility of scaling-resistant membranes[J]. Journal of Membrane Science, 2019, 579: 52- 69. |
5 | Li C Y, Guo X Y, Wang X, et al. Membrane fouling mitigation by coupling applied electric field in membrane system: configuration, mechanism and performance[J]. Electrochimica Acta, 2018, 287: 124- 134. |
6 | Matin A, Khan Z, Zaidi S M J, et al. Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention[J]. Desalination, 2011, 281: 1- 16. |
7 | Wang K, Abdalla A A, Khaleel M A, et al. Mechanical properties of water desalination and wastewater treatment membranes[J]. Desalination, 2017, 401: 190- 205. |
8 | Kang G D, Cao Y M. Development of antifouling reverse osmosis membranes for water treatment: a review[J]. Water Research, 2012, 46( 3): 584- 600. |
9 | Jiang S, Li Y, Ladewig B P. A review of reverse osmosis membrane fouling and control strategies[J]. Science of the Total Environment, 2017, 595: 567- 583. |
10 | Greenlee L F, Lawler D F, Freeman B D, et al. Reverse osmosis desalination: water sources, technology, and today s challenges[J]. Water Research, 2009, 43( 9): 2317- 2348. |
11 | Zhao X T, Zhang R N, Liu Y N, et al. Antifouling membrane surface construction: chemistry plays a critical role[J]. Journal of Membrane Science, 2018, 551: 145- 171. |
12 | Wu J H, Wang Z, Yan W T, et al. Improving the hydrophilicity and fouling resistance of RO membranes by surface immobilization of PVP based on a metal-polyphenol precursor layer[J]. Journal of Membrane Science, 2015, 496: 58- 69. |
13 | Wu J H, Wang Z, Wang Y, et al. Polyvinylamine-grafted polyamide reverse osmosis membrane with improved antifouling property[J]. Journal of Membrane Science, 2015, 495: 1- 13. |
14 | Zhang Y, Wan Y, Pan G Y, et al. Surface modification of polyamide reverse osmosis membrane with sulfonated polyvinyl alcohol for antifouling[J]. Applied Surface Science, 2017, 419: 177- 187. |
15 | Kang G D, Liu M, Lin B, et al. A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly(ethylene glycol)[J]. Polymer, 2007, 48( 5): 1165- 1170. |
16 | Sagle A C, van Wagner E M, Ju H, et al. PEG-coated reverse osmosis membranes: desalination properties and fouling resistance[J]. Journal of Membrane Science, 2009, 340( 1/2): 92- 108. |
17 | Kang G D, Yu H J, Liu Z N, et al. Surface modification of a commercial thin film composite polyamide reverse osmosis membrane by carbodiimide-induced grafting with poly(ethylene glycol) derivatives[J]. Desalination, 2011, 275( 1/ 2/ 3): 252- 259. |
18 | He M, Gao K, Zhou L, et al. Zwitterionic materials for antifouling membrane surface construction[J]. Acta Biomaterialia, 2016, 40: 142- 152. |
19 | Wu J, Lin W, Wang Z, et al. Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance[J]. Langmuir, 2012, 28( 19): 7436- 7441. |
20 | Azari S, Zou L D. Using zwitterionic amino acid L-DOPA to modify the surface of thin film composite polyamide reverse osmosis membranes to increase their fouling resistance[J]. Journal of Membrane Science, 2012, 401: 68- 75. |
21 | Azari S, Zou L D. Fouling resistant zwitterionic surface modification of reverse osmosis membranes using amino acid L-cysteine[J]. Desalination, 2013, 324: 79- 86. |
22 | Yang Z, Saeki D, Matsuyama H. Zwitterionic polymer modification of polyamide reverse-osmosis membranes via surface amination and atom transfer radical polymerization for anti-biofouling [J]. Journal of Membrane Science, 2018, 550: 332- 339. |
23 | Ma R, Ji Y L, Weng X D, et al. High-flux and fouling-resistant reverse osmosis membrane prepared with incorporating zwitterionic amine monomers via interfacial polymerization [J]. Desalination, 2016, 381: 100- 110. |
24 | Mccloskey B D, Park H B, Ju H, et al. Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes[J]. Polymer, 2010, 51( 15): 3472- 3485. |
25 | Li H, Peng L, Luo Y B, et al. Enhancement in membrane performances of a commercial polyamide reverse osmosis membrane via surface coating of polydopamine followed by the grafting of polyethylenimine [J]. RSC Advances, 2015, 5( 119): 98566- 98575. |
26 | Baek Y, Freeman B D, Zydney A L, et al. A facile surface modification for antifouling reverse osmosis membranes using polydopamine under UV irradiation[J]. Industrial & Engineering Chemistry Research, 2017, 56( 19): 5756- 5760. |
27 | Yu S C, Yao G H, Dong B Y, et al. Improving fouling resistance of thin-film composite polyamide reverse osmosis membrane by coating natural hydrophilic polymer sericin[J]. Separation and Purification Technology, 2013, 118: 285- 293. |
28 | Zhang F, Wu Y P, Li W X, et al. Depositing lignin on membrane surfaces for simultaneously upgraded reverse osmosis performances: an upscalable route[J]. AIChE Journal, 2017, 63( 6): 2221- 2231. |
29 | Choi W, Choi J, Bang J, et al. Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications[J]. ACS Applied Materials and Interfaces, 2013, 5( 23): 12510- 12519. |
30 | Zhao H Y, Qiu S, Wu L G, et al. Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes[J]. Journal of Membrane Science, 2014, 450: 249- 256. |
31 | 邬军辉. 抗污染反渗透膜及其中试生产线研究[D]. 天津: 天津大学, 2015. |
Wu J H. Study of antifouling reverse osmosis membranes and their pilot-scale production line[D]. Tianjin: Tianjin University, 2015 | |
32 | Koo J Y, Hong S P, Lee J H, et al. Selective membrane having a high fouling resistance: US7913857 B2[P]. 2011-03-29. |
33 | de Vos W M, Leermakers F A M, Lindhoud S, et al. Modeling the structure and antifouling properties of a polymer brush of grafted comb-polymers[J]. Macromolecules, 2011, 44( 7): 2334- 2342. |
34 | Sarkar A, Carver P I, Zhang T, et al. Dendrimer-based coatings for surface modification of polyamide reverse osmosis membranes[J]. Journal of Membrane Science, 2010, 349( 1/2): 421- 428. |
35 | Nikolaeva D, Langner C, Ghanem A, et al. Hydrogel surface modification of reverse osmosis membranes[J]. Journal of Membrane Science, 2015, 476: 264- 276. |
36 | Chen L Y, Zhang P, Gai J G. Dendritic molecules give excellent long-lasting desalination fouling resistance to reverse osmosis membrane by generating an amine-rich layer[J]. Journal of Applied Polymer Science, 2019, 136( 17): 47368. |
37 | Yang Z, Saeki D, Wu H C, et al. Effect of polymer structure modified on RO membrane surfaces via surface-initiated ATRP on dynamic biofouling behavior [J]. Journal of Membrane Science, 2019, 582: 111- 119. |
38 | Chen W, Su Y, Peng J, et al. Engineering a robust, versatile amphiphilic membrane surface through forced surface segregation for ultralow flux-decline[J]. Advanced Functional Materials, 2011, 21( 1): 191- 198. |
39 | Zhao X T, Su Y L, Dai H, et al. Coordination-enabled synergistic surface segregation for fabrication of multi-defense mechanism membranes[J]. Journal of Materials Chemistry A, 2015, 3( 7): 3325- 3331. |
40 | Galli G, Martinelli E. Amphiphilic polymer platforms: surface engineering of films for marine antibiofouling[J]. Macromolecular Rapid Communications, 2017, 38( 8): 1600704. |
41 | Choi H, Park J, Tak T, et al. Surface modification of seawater reverse osmosis (SWRO) membrane using methyl methacrylate-hydroxy poly(oxyethylene) methacrylate (MMA-HPOEM) comb-polymer and its performance[J]. Desalination, 2012, 291: 1- 7. |
42 | Matin A, Shafi H, Wang M, et al. Reverse osmosis membranes surface-modified using an initiated chemical vapor deposition technique show resistance to alginate fouling under cross-flow conditions: filtration & subsequent characterization[J]. Desalination, 2016, 379: 108- 117. |
43 | Dutta K, De S. Smart responsive materials for water purification: an overview[J]. Journal of Materials Chemistry A, 2017, 5( 42): 22095- 22112. |
44 | You M, Wang P, Xu M L, et al. Fouling resistance and cleaning efficiency of stimuli-responsive reverse osmosis (RO) membranes[J]. Polymer, 2016, 103: 457- 467. |
45 | Wu D H, Liu X S, Yu S C, et al. Modification of aromatic polyamide thin-film composite reverse osmosis membranes by surface coating of thermo-responsive copolymers P(NIPAM- co-Am(Ⅰ): Preparation and characterization [J]. Journal of Membrane Science, 2010, 352( 1/2): 76- 85. |
46 | Yu S C, Liu X S, Liu J Q, et al. Surface modification of thin-film composite polyamide reverse osmosis membranes with thermo-responsive polymer (TRP) for improved fouling resistance and cleaning efficiency[J]. Separation and Purification Technology, 2011, 76( 3): 283- 291. |
47 | Meng J Q, Cao Z, Ni L, et al. A novel salt-responsive TFC RO membrane having superior antifouling and easy-cleaning properties[J]. Journal of Membrane Science, 2014, 461: 123- 129. |
48 | Slavin Y N, Asnis J, Hafeli U O, et al. Metal nanoparticles: understanding the mechanisms behind antibacterial activity[J]. Journal of Nanobiotechnology, 2017, 15( 1): 65. |
49 | Kim S H, Kwak S Y, Sohn B H, et al. Design of TiO 2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem [J]. Journal of Membrane Science, 2003, 211( 1): 157- 165. |
50 | Yang H L, Lin J C, Huang C. Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination[J]. Water Research, 2009, 43( 15): 3777- 3786. |
51 | Ben-Sasson M, Lu X, Bar-Zeev E, et al. In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation [J]. Water Research, 2014, 62: 260- 270. |
52 | Ben-Sasson M, Lu X L, Nejati S, et al. In situ surface functionalization of reverse osmosis membranes with biocidal copper nanoparticles [J]. Desalination, 2016, 388: 1- 8. |
53 | Dong C X, Wang Z, Wu J H, et al. A green strategy to immobilize silver nanoparticles onto reverse osmosis membrane for enhanced anti-biofouling property[J]. Desalination, 2017, 401: 32- 41. |
54 | Yin J, Yang Y, Hu Z Q, et al. Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling[J]. Journal of Membrane Science, 2013, 441: 73- 82. |
55 | Park S H, Ko Y S, Park S J, et al. Immobilization of silver nanoparticle-decorated silica particles on polyamide thin film composite membranes for antibacterial properties[J]. Journal of Membrane Science, 2016, 499: 80- 91. |
56 | 江山, 王立, 俞豪杰, 等. 新型有机高分子抗菌剂[J]. 高分子通报, 2002, ( 6): 57- 62. |
Jiang S, Wang L, Yu H J, et al. Novel organic polymeric biocides[J]. Polymer Bulletin, 2002, ( 6): 57- 62. | |
57 | Yudovin-Farber I, Golenser J, Beyth N, et al. Quaternary ammonium polyethyleneimine: antibacterial activity[J]. Journal of Nanomaterials, 2010, 2010: 1- 11. |
58 | Hibbs M R, Mcgrath L K, Kang S, et al. Designing a biocidal reverse osmosis membrane coating: synthesis and biofouling properties[J]. Desalination, 2016, 380: 52- 59. |
59 | Dong A, Wang Y J, Gao Y, et al. Chemical insights into antibacterial N-halamines [J]. Chemical Reviews, 2017, 117( 6): 4806- 4862. |
60 | Wei X Y, Wang Z, Chen J, et al. A novel method of surface modification on thin-film-composite reverse osmosis membrane by grafting hydantoin derivative[J]. Journal of Membrane Science, 2010, 346( 1): 152- 162. |
61 | Wei X Y, Wang Z, Zhang Z, et al. Surface modification of commercial aromatic polyamide reverse osmosis membranes by graft polymerization of 3-allyl-5,5-dimethylhydantoin[J]. Journal of Membrane Science, 2010, 351( 1/2): 222- 233. |
62 | Zhang Z, Wang Z, Wang J, et al. Enhancing chlorine resistances and anti-biofouling properties of commercial aromatic polyamide reverse osmosis membranes by grafting 3-allyl-5,5-dimethylhydantoin and N,N′-methylenebis(acrylamide) [J]. Desalination, 2013, 309: 187- 196. |
63 | Xu J, Wang Z, Yu L L, et al. A novel reverse osmosis membrane with regenerable anti-biofouling and chlorine resistant properties[J]. Journal of Membrane Science, 2013, 435: 80- 91. |
64 | Wang Y, Wang Z, Wang J X. Lab-scale and pilot-scale fabrication of amine-functional reverse osmosis membrane with improved chlorine resistance and antimicrobial property[J]. Journal of Membrane Science, 2018, 554: 221- 231. |
65 | Salgueiro A M, Santos M D, Saraiva J A, et al. Ultra-high pressure modified cellulosic fibres with antimicrobial properties[J]. Carbohydrate Polymers, 2017, 175: 303- 310. |
66 | 周艺璇, 王志, 董晨曦, 等. 双胍基化聚乙烯胺改性制备抗生物污染反渗透膜[J]. 化工学报, 2018, 69( 2): 858- 865. |
Zhou Y X, Wang Z, Dong C X, et al. Biguanidine functionalized polyvinylamine modified reverse osmosis membrane with improved anti-bacterial property[J]. CIESC Journal, 2018, 69( 2): 858- 865. | |
67 | Wang H H, Zhou Y X, Wang Y, et al. Biguanidine functional chitooligosaccharide modified reverse osmosis membrane with improved anti-biofouling property[J]. RSC Advances, 2018, 8( 73): 41938- 41949. |
68 | Glinel K, Thebault P, Humblot V, et al. Antibacterial surfaces developed from bio-inspired approaches[J]. Acta Biomaterialia, 2012, 8( 5): 1670- 1684. |
69 | Saeki D, Nagao S, Sawada I, et al. Development of antibacterial polyamide reverse osmosis membrane modified with a covalently immobilized enzyme[J]. Journal of Membrane Science, 2013, 428: 403- 409. |
70 | Bodner E J, Kandiyote N S, Lutskiy M Y, et al. Attachment of antimicrobial peptides to reverse osmosis membranes by Cu (I)-catalyzed 1, 3-dipolar alkyne–azide cycloaddition[J]. RSC Advances, 2016, 6( 94): 91815- 91823. |
71 | Kandiyote N S, Mohanraj G, Mao C, et al. Synergy on surfaces: anti-biofouling interfaces using surface-attached antimicrobial peptides PGLa and Magainin-2[J]. Langmuir, 2018, 34( 37): 11147- 11155. |
72 | Habimana O, Semião A J C, Casey E. The role of cell-surface interactions in bacterial initial adhesion and consequent biofilm formation on nanofiltration/reverse osmosis membranes[J]. Journal of Membrane Science, 2014, 454: 82- 96. |
73 | Nikkola J, Liu X, Li Y, et al. Surface modification of thin film composite RO membrane for enhanced anti-biofouling performance[J]. Journal of Membrane Science, 2013, 444: 192- 200. |
74 | Wang J, Wang Z, Wang J X, et al. Improving the water flux and bio-fouling resistance of reverse osmosis (RO) membrane through surface modification by zwitterionic polymer[J]. Journal of Membrane Science, 2015, 493: 188- 199. |
75 | Liu C, Faria A F, Ma J, et al. Mitigation of biofilm development on thin-film composite membranes functionalized with zwitterionic polymers and silver nanoparticles[J]. Environmental Science & Technology, 2017, 51( 1): 182- 191. |
76 | Ye G, Lee J, Perreault F, et al. Controlled architecture of dual-functional block copolymer brushes on thin-film composite membranes for integrated “defending” and “attacking” strategies against biofouling[J]. ACS Applied Materials and Interfaces, 2015, 7( 41): 23069- 23079. |
77 | Perreault F, De Faria A F, Nejati S, et al. Antimicrobial properties of graphene oxide nanosheets: why size matters[J]. ACS Nano, 2015, 9( 7): 7226- 7236. |
78 | Huang X, Marsh K L, Mcverry B T, et al. Low-fouling antibacterial reverse osmosis membranes via surface grafting of graphene oxide [J]. ACS Applied Materials and Interfaces, 2016, 8( 23): 14334- 14338. |
79 | Wang Y, Wang Z, Han X L, et al. Improved flux and anti-biofouling performances of reverse osmosis membrane via surface layer-by-layer assembly [J]. Journal of Membrane Science, 2017, 539: 403- 411. |
80 | Pan Y, Ma L J, Lin S, et al. One-step bimodel grafting via a multicomponent reaction toward antifouling and antibacterial TFC RO membranes [J]. Journal of Materials Chemistry A, 2016, 4( 41): 15945- 15960. |
81 | Rahaman M S, Therien-Aubin H, Ben-Sasson M, et al. Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes[J]. Journal of Materials Chemistry B, 2014, 2( 12): 1724- 1732. |
82 | Wang Y, Wang Z, Wang J X, et al. Triple antifouling strategies for reverse osmosis membrane biofouling control[J]. Journal of Membrane Science, 2018, 549: 495- 506. |
[1] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[2] | Yanpeng WU, Xiaoyu LI, Qiaoyang ZHONG. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles [J]. CIESC Journal, 2023, 74(S1): 259-264. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[5] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[6] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[7] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[8] | Jie LIU, Lisheng WU, Jinjin LI, Zhenghong LUO, Yinning ZHOU. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers [J]. CIESC Journal, 2023, 74(7): 3051-3057. |
[9] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[10] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[11] | Enzhe BI, Shuangxi LI, Lianxiang SHA, Dengyu LIU, Kaifang CHEN. Multi-objective optimization analysis of high temperature dynamic pressure split ring seal parameters [J]. CIESC Journal, 2023, 74(6): 2565-2579. |
[12] | Xinyue WANG, Junjie WANG, Sixian CAO, Cui WANG, Lingkun LI, Hongyu WU, Jing HAN, Hao WU. Effect of glass primary container surface modification on monoclonal antibody aggregates induced by mechanical stress [J]. CIESC Journal, 2023, 74(6): 2580-2588. |
[13] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[14] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[15] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 664
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 747
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||