1 |
Sharma A, Tyagi V V, Chen C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable Sustainable Energy Rev., 2009, 13(2): 318-345.
|
2 |
Mahdi J M, Lohrasbi S, Nsofor E C. Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: a review[J]. Int. J. Heat Mass Transfer, 2019, 137: 630-649.
|
3 |
Ding W, Bonk A, Gussone J, et al. Electrochemical measurement of corrosive impurities in molten chlorides for thermal energy storage[J]. J. Energy Storage, 2018, 15: 408-414.
|
4 |
胡康, 徐飞, 陈磊, 等. 利用相变储热提升电力系统可再生能源消纳[J]. 工程热物理学报, 2018, 39(1): 1-7.
|
|
Hu K, Xu F, Chen L, et al. Improve the integration of renewable energy sources into power system by the usage of phase-change heat storage[J]. J. Eng. Thermophys., 2018, 39(1): 1-7.
|
5 |
Rahman A, Smith A D, Fumo N. Performance modeling and parametric study of a stratified water thermal storage tank[J]. Appl. Therm. Eng., 2016, 100: 668-679.
|
6 |
Tang J L, Ouyang Z R, Shi Y Y. Experimental analysis and FLUENT simulation of a stratified chilled water storage system[J]. Eur. Phys. J. Plus, 2019, 134(3): 118-126.
|
7 |
Nazir H, Batool M, Bolivar O F J, et al. Recent developments in phase change materials for energy storage applications: a review[J]. Int. J. Heat Mass Transfer, 2019, 129: 491-523.
|
8 |
Agyenim F, Hewitt N, Eames P, et al. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renewable Sustainable Energy Rev., 2010, 14(2): 615-628.
|
9 |
Kalnæs S E, Jelle B P. Phase change materials and products for building applications: a state-of-the-art review and future research opportunities[J]. Energ. Buildings, 2015, 94: 150-176.
|
10 |
Su D, Jia Y, Alva G, et al. Comparative analyses on dynamic performances of photovoltaic-thermal solar collectors integrated with phase change materials[J]. Energy Convers. Manage., 2017, 131: 79-89.
|
11 |
Yau Y H, Rismanchi B. A review on cool thermal storage technologies and operating strategies[J]. Renewable Sustainable Energy Rev., 2012, 16(1): 787-797.
|
12 |
Bejarano G, Vargas M, Ortega M G, et al. Efficient simulation strategy for PCM-based cold-energy storage systems[J]. Appl. Therm. Eng., 2018, 139: 419-431.
|
13 |
Ibrahim N I, Al-Sulaiman F A, Rahman S, et al. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review[J]. Renewable Sustainable Energy Rev., 2017, 74: 26-50.
|
14 |
Huang X, Alva G, Jia Y, et al. Morphological characterization and applications of phase change materials in thermal energy storage: a review[J]. Renewable Sustainable Energy Rev., 2017, 72: 128-145.
|
15 |
Mahdi J M, Nsofor E C. Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins[J]. Appl. Energ., 2018, 211: 975-986.
|
16 |
Yagci O K, Avci M, Aydin O. Melting and solidification of PCM in a tube-in-shell unit: effect of fin edge lengths ratio[J]. J. Energy Storage, 2019, 24: 100802.
|
17 |
Xu H T, Miao Y B, Wang N, et al. Experimental investigations of heat transfer characteristics of MPCM during charging[J]. Appl. Therm. Eng., 2018, 144: 721-725.
|
18 |
Qiu Z, Ma X, Li P, et al. Micro-encapsulated phase change material (MPCM) slurries: characterization and building applications[J]. Renewable Sustainable Energy Rev., 2017, 77: 246-262.
|
19 |
Elbahjaoui R, El Qarnia H. Transient behavior analysis of the melting of nanoparticle-enhanced phase change material inside a rectangular latent heat storage unit[J]. Appl. Therm. Eng., 2017, 112: 720-738.
|
20 |
陈华, 柳秀丽, 杨亚星, 等. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70: 86-92.
|
|
Chen H, Liu X Y, Yang Y X, et al. Numerical simulation of foam metal copper/paraffin phase change thermal storage process[J]. CIESC Journal, 2019, 70: 86-92.
|
21 |
周孙希, 章学来, 刘升, 等. 癸醇-棕榈酸/膨胀石墨低温复合相变材料的制备与性能[J]. 化工学报, 2019, 70(1): 290-297.
|
|
Zhou S X, Zhang X L, Liu S, et al. Preparation and properties of decyl alcohol-palmitic acid/expanded graphite low temperature composite phase change material[J]. CIESC Journal, 2019, 70(1): 290-297.
|
22 |
Yang X, Lu Z, Bai Q, et al. Thermal performance of a shell-and-tube latent heat thermal energy storage unit: role of annular fins[J]. Appl. Energ., 2017, 202: 558-570.
|
23 |
Zhao J, Rao Z, Liu C, et al. Experiment study of oscillating heat pipe and phase change materials coupled for thermal energy storage and thermal management[J]. Int. J. Heat Mass Transfer, 2016, 99: 252-260.
|
24 |
Esapour M, Hamzehnezhad A, Rabienataj D A A, et al. Melting and solidification of PCM embedded in porous metal foam in horizontal multi-tube heat storage system[J]. Energy Convers. Manage., 2018, 171: 398-410.
|
25 |
Chen C, Zhang H, Gao X, et al. Numerical and experimental investigation on latent thermal energy storage system with spiral coil tube and paraffin/expanded graphite composite PCM[J]. Energy Convers. Manage., 2016, 126: 889-897.
|
26 |
Tay N H S, Belusko M, Bruno F. An effectiveness-NTU technique for characterising tube-in-tank phase change thermal energy storage systems[J]. Appl. Energ., 2012, 91(1): 309-319.
|
27 |
Belusko M, Halawa E, Bruno F. Characterising PCM thermal storage systems using the effectiveness-NTU approach[J]. Int. J. Heat Mass Transfer, 2012, 55(13/14): 3359-3365.
|
28 |
Zhao D, Tan G. Numerical analysis of a shell-and-tube latent heat storage unit with fins for air-conditioning application[J]. Appl. Energ., 2015, 138: 381-392.
|
29 |
Fang Y, Niu J, Deng S. Numerical analysis for maximizing effective energy storage capacity of thermal energy storage systems by enhancing heat transfer in PCM[J]. Energ. Buildings, 2018, 160: 10-18.
|
30 |
Angelini G, Lucchini A, Manzolini G. Comparison of thermocline molten salt storage performances to commercial two-tank configuration[J]. Energ. Procedia, 2014, 49: 694-704.
|
31 |
Fang Y, Niu J, Deng S. An analytical technique for the optimal designs of tube-in-tank thermal energy storage systems using PCM[J]. Int. J. Heat Mass Transfer, 2019, 128: 849-859.
|