CIESC Journal ›› 2020, Vol. 71 ›› Issue (S1): 479-485.DOI: 10.11949/0438-1157.20191033
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Received:
2019-09-16
Revised:
2019-10-21
Online:
2020-04-25
Published:
2020-04-25
Contact:
Fuheng LI
通讯作者:
李富恒
CLC Number:
Fuheng LI. Investigation on photothermal conversion characteristics of graphene nanosheets-glycol nanofluids[J]. CIESC Journal, 2020, 71(S1): 479-485.
李富恒. 石墨烯纳米片-乙二醇纳米流体光热转化特性研究[J]. 化工学报, 2020, 71(S1): 479-485.
Add to citation manager EndNote|Ris|BibTeX
Concentration/%(mass) | PTC effectiveness/% | Improve/% |
---|---|---|
0 | 51.02 | — |
0.0001 | 54.56 | 6.94 |
0.0003 | 66.81 | 30.95 |
0.0005 | 70.83 | 38.83 |
0.0007 | 76.35 | 49.65 |
0.001 | 73.81 | 44.67 |
Table 1 Photothermal conversion efficiency of graphene nanosheet nanofluids with different concentrations
Concentration/%(mass) | PTC effectiveness/% | Improve/% |
---|---|---|
0 | 51.02 | — |
0.0001 | 54.56 | 6.94 |
0.0003 | 66.81 | 30.95 |
0.0005 | 70.83 | 38.83 |
0.0007 | 76.35 | 49.65 |
0.001 | 73.81 | 44.67 |
1 | Brini R, Amara M, Jemmali H. Renewable energy consumption, international trade, oil price and economic growth inter-linkages: the case of tunisia[J]. Renew. Sustain. Energy Rev., 2017, 76(9): 620-627. |
2 | Mussard M. Solar energy under cold climatic conditions: a review[J]. Renew. Sustain. Energy Rev., 2017, 74(7): 733-745. |
3 | Johansson T B, Patwardhan A P. Global energy assessment—toward a sustainable future [J]. Bibliogr., 2012, 3/4(31): 9-17. |
4 | Xiao C F, Luo H L, Tang R S, et al. Solar thermal utilization in China[J]. Renewable Energy, 2004, 29(9): 1549-1556. |
5 | Shafieian A, Khiadani M, Nosrati A. Strategies to improve the thermal performance of heat pipe solar collectors in solar systems: a review[J]. Energy Conversion and Management, 2019, 183(3): 307-331. |
6 | Fu H D, Zhao X X, Ma L, et al. A comparative study on three types of solar utilization technologies for buildings: photovoltaic, solar thermal and hybrid photovoltaic/thermal systems[J]. Energy Conversion and Management, 2017, 140(15): 1- 13. |
7 | Leite G N P, Weschenfelder F, Araújo A M, et al. An economic analysis of the integration between air-conditioning and solar photovoltaic systems [J]. Energy Conversion and Management, 2019,185(4): 836-849. |
8 | Fang J, Liu Q B, Guo S P, et al. Spanning solar spectrum: a combined photochemical and thermochemical process for solar energy storage[J]. Applied Energy, 2019, 247(8): 116-126. |
9 | Fang J, Liu Q B, Guo S P, et al. A full-spectrum solar chemical energy storage system with photochemical process and thermochemical process[J]. Energy Procedia, 2018, 152(10): 1063-1068. |
10 | Otanicar T P, Phelan P E, Patrick R S, et al. Nanofluid based direct absorption solar collector[J]. Renew. Sustain. Energy Rev., 2010, 2(3): 1063-1073. |
11 | Robert A T,Patrick E P, Todd P O, et al. Nanofluid opticalproperty characterization: towards efficient direct absorption solar collectors[J]. Nanoscale Res., 2011,225(6):207-218. |
12 | Gorji T B, Ranjbar A A. A review on optical properties and application of nanofluids in direct absorption solar collectors(DASCs) [J]. Renew. Sustain. Energy Rev., 2017, 72(5): 10-32. |
13 | Minardi J E, Chuang H N. Performance of a “black” liquid flat-plate solar collector[J]. Sol. Energy, 1975, 17(3): 179-183. |
14 | Choi S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles[J]. ASME, 1995, 23(1): 99-105. |
15 | Bandarra E P, Mendoza O S H, Beicker C L L, et al. Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system[J]. Energy Convers. Manag., 2014, 84(8): 261-267. |
16 | Amjad M, Yang Y, Raza G. Deposition pattern and tracer particle motion of evaporating multi-component sessile droplets[J]. Colloid Interface Sci., 2017, 506(11): 83-92. |
17 | Zamzamian A, KeyanpourRad M, KianiNeyestani M Y, et al. An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors[J]. Renewable Energy, 2014, 74(11): 658-664. |
18 | Jamal-Abad M T, Zamzamian A, Imani E, et al. Experimental study of the performance of a flat-plate collector using Cu-water nanofluid[J]. Thermophys. Heat Transf., 2013, 27(4): 756-760. |
19 | Chen M J, He Y R, Zhu J Q, et al. Enhancement of photo-thermal conversion using gold nanofluids with different particle sizes [J]. Energy Convers. Manag., 2016, 112(3): 21-30. |
20 | Zhang H, Chen H J, Du X, et al. Photothermal conversion characteristics of gold nanoparticle dispersions [J]. Sol. Energy, 2014, 100(2): 141-147. |
21 | Gupta H K, Agrawal G D, Mathur J. An experimental investigation of a low temperature Al2O3-H2O nanofluid based direct absorption solar collector[J]. Sol. Energy, 2015, 118(8): 390-396. |
22 | Mahian O, Kianifar A, Sahin A Z, et al. Entropy generation during Al2O3/water nanofluid flow in a solar collector: effects of tube roughness, nanoparticle size, and different thermophysical models[J]. Heat and Mass Transf., 2014, 78(11): 64-75. |
23 | Farajzadeh E, Movahed S, Hosseini R. Experimental and numerical investigations on the effect of Al2O3/TiO2/H2O nanofluids on thermal efficiency of the flat plate solar collector [J]. Renewable Energy, 2018, 118(8): 122-130. |
24 | Goudarzi K, Shojaeizadeh E, Nejati F. An experimental investigation on the simultaneous effect of CuO-H2O nanofluid and receiver helical pipe on the thermal efficiency of a cylindrical solar collector[J]. Appl. Therm. Eng., 2014, 73(1): 1234-1241. |
25 | Karami M, Akhavan-Bahabadi M A, Delfani S, et al. Experimental investigation of CuO nanofluid based direct absorption solar collector for residential applications[J]. Renew. Sustain. Energy Rev., 2015, 52(12): 793-801. |
26 | Meibodi S S, Kianifar A, Niazmand H, et al. Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2/EG- water nanofluids[J]. International Communications in Heat and Mass Transfer, 2015, 65(7): 71-75. |
27 | Gupta H K, Agrawal G D, Mathur J. An experimental investigation of a low temperature Al2O3-H2O nanofluid based direct absorption solar collector[J]. Sol. Energy, 2015, 118(8): 390-396. |
28 | Karami M, Akhavan-Bahabadi M A, Delfani S, et al. A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector[J]. Sol. Energy Mater. Sol. Cells, 2014, 121(2): 114-118. |
29 | Khullar V, Tyagi H, Phelan P E, et al. Solar energy harvesting using nanofluids-based concentrating solar collector[J]. Nanotechnol. Eng. Med., 2013, 3(3): 310-319. |
30 | Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 30(6): 666-669. |
31 | 郭晓琴, 王永凯, 余小霞, 等. 石墨烯纳米片的制备和表征[J]. 化工新型材料, 2013, (7): 128-130. |
Guo X Q, Wang Y K, Yu X X, et al. Preparation and characterization of graphene nanosheets[J]. New Chemical Materials, 2013, (7): 128-130. |
[1] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[2] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[3] | Shuai YAN, Haiping YANG, Yingquan CHEN, Xianhua WANG, Kuo ZENG, Hanping CHEN. Recent advances in photothermal catalysis of CO2 reduction [J]. CIESC Journal, 2022, 73(10): 4298-4310. |
[4] | GAO Shuaitao, LIU Xueke, ZHANG Li, LIU Fen, YU Jiang, SHANG Jianfeng, OU Tianxiong, ZHOU Zheng, CHEN Pingwen. Aspen Plus simulation on selective separation of high concentration acid gas of H2S and CO2 [J]. CIESC Journal, 2021, 72(S1): 413-420. |
[5] | QI Cong, LI Ke'ao, LI Chunyang. Influence of micro-rib structures on thermal performance of nanofluids flowing around circular cylinders [J]. CIESC Journal, 2021, 72(4): 2006-2017. |
[6] | LIU Changhui, LIU Hongli, ZHANG Tianjian, RAO Zhonghao. Preparation and thermal physical properties of nanofluids based on a urea/choline chloride deep eutectic solvent system [J]. CIESC Journal, 2021, 72(3): 1333-1341. |
[7] | ZHANG Kuangsheng, TANG Meirong, XUE Xiaojia, LI Kai, SHAO Yan, ZHOU Jian, YUE Chongchong, LI Zhuangzhuang, PAN Pengju. Crystallization and degradation behavior of poly(lactic acid)/poly(ethylene glycol) blends [J]. CIESC Journal, 2021, 72(2): 1181-1190. |
[8] | Changhui LIU,Haiyue ZHANG,Yemei LI,Tianjian ZHANG,Yanlong GU. Recent advances of deep eutectic solvents in energy storage and heat transfer [J]. CIESC Journal, 2021, 72(10): 4973-4986. |
[9] | Dongmin TIAN, Yanpeng WU, Fengjun CHEN. Analysis of heat transfer performance of copper-water heat pipe based on nano enhanced-PCM [J]. CIESC Journal, 2020, 71(S1): 220-226. |
[10] | Li HE, Xiong ZOU, Haotian YE, Xiangqin LI, Hongguang DONG. Measurement and correlation of liquid-liquid equilibrium data for o-cresol-m-xylene-ethylene glycol [J]. CIESC Journal, 2020, 71(7): 2993-2999. |
[11] | Zhongmin LANG, Gangqiang WU, Wenxiu HE, Xiaoxing HAN, Yanmeng GOU, Shuangying LI. Pool boiling heat transfer characteristics of CeO2/deionized water nanofluids [J]. CIESC Journal, 2020, 71(5): 2061-2068. |
[12] | Qing YANG, Simin XU, Dawei ZHANG, Qingchun YANG. Techno-economic analysis of oil and coal to ethylene glycol processes [J]. CIESC Journal, 2020, 71(5): 2164-2172. |
[13] | Xueke LIU,Li ZHANG,Fen LIU,Shuaitao GAO,Jiang YU,Jianfeng SHANG,Tianxiong OU,Zheng ZHOU,Pingwen CHEN. Catalytic hydrolysis of carbonyl sulfide with application of NHD/MDEA/H2O [J]. CIESC Journal, 2020, 71(11): 5286-5293. |
[14] | Xiaoqing YANG,Quanfei LIAO,Yun YI,Chunliang YANG,Tianxiang ZHAO,Xingbang HU,Fei LIU. Study on performance and mechanism of triethylene glycol dimethyl ether for capturing low concentration SO2 [J]. CIESC Journal, 2020, 71(11): 5052-5058. |
[15] | Juhui CHEN, Kun HAN, Shuai WANG, Mingkun LI, Jiyuan CHEN, Ming MA. Study on thermal conductive enhancement mechanism of nanofluid based on anti-disturbance non-equilibrium molecular dynamics [J]. CIESC Journal, 2019, 70(6): 2147-2152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||