1 |
Wang X F, Sun Z J, Wu C Z, et al. Experimental study on thermosyphon heat sink for cooling of electronic apparatus[J]. Journal of Electron Devices, 2004, 27(3): 393-396.
|
2 |
Vasiliev L L. The sorption heat pipe—a new device for thermal control and active cooling[J]. Superlattices and Microstructures, 2003, 35(3): 465-477.
|
3 |
Chen B B, Liu W, Liu Z C, et al. Experimental investigation of loop heat pipe with flat evaporator using biporous wick[J]. Applied Thermal Engineering, 2012, 42(42): 34-40.
|
4 |
Chang Y W, Cheng C H, Wang J C, et al. Heat pipe for cooling of electronic equipment[J]. Energy Conversion and Management, 2008, 49(11): 3398-3404.
|
5 |
Vasiliev L L. Micro and miniature heat pipes—electronic component coolers[J]. Applied Thermal Engineering, 2008, 28(4): 266-273.
|
6 |
Zhou G H, Li J, Lv L. An ultra-thin miniature loop heat pipe cooler for mobile electronics[J]. Applied Thermal Engineering, 2016, 109: 514-523.
|
7 |
Li J, Wang D, Peterson G P B. A compact loop heat pipe with flat square evaporator for high power chip cooling[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1(4): 519-527.
|
8 |
McGlen R J, Jachuck R, Lin S. Integrated thermal management techniques for high power electronic devices[J]. Applied Thermal Engineering, 2004, 24(8/9): 1143-1156.
|
9 |
Faghri A. Heat Pipe Science and Technology[M]. UK: Taylor and Francis, 1995.
|
10 |
孙志坚, 何国安, 王立新, 等. 两种电子器件用重力型热管散热器的换热特性[J]. 化工学报, 2006, 57(10): 2283-2288.
|
|
Sun Z J, He G A, Wang L X, et al. Heat transfer characteristics of two different thermosyphon radiators for electronic device[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(10): 2283-2288.
|
11 |
赵耀华, 王宏燕, 刁彦华, 等. 平板微热管阵列及其传热特性[J]. 化工学报, 2011, 62(2): 336-343.
|
|
Zhao Y H, Wang H Y, Diao Y H, et al. Heat transfer characteristics of flat micro-heat pipe array[J]. CIESC Journal, 2011, 62(2): 336-343.
|
12 |
李永赞, 胡明辅, 李勇. 热管技术的研究进展及其工程应用[J]. 应用能源技术, 2008, (6): 45-48.
|
|
Li Y Z, Hu M F, Li Y. Progress of theoretical research and application investigation on heat pipe technology and its application in engineering [J]. Applied Energy Technology, 2008, (6): 45-48.
|
13 |
Weng Y C, Cho H P, Chang C C, et al. Heat pipe with PCM for electronic cooling[J]. Applied Energy, 2011, 88(5): 1825-1833.
|
14 |
Behi H, Ghanbarpour M, Behi M. Investigation of PCM-assisted heat pipe for electronic cooling[J]. Applied Thermal Engineering, 2017, 127: 1132-1142.
|
15 |
李夔宁, 郭宁宁, 王贺. 改善相变材料导热性能研究综述[J]. 制冷学报, 2008, 29(6): 46-50.
|
|
Li K N, Guo N N, Wang H. Review of study on improving conductivity of phase change material[J]. Journal of Refrigeration, 2008, 29(6): 46-50.
|
16 |
Lyeo H K, Cahill D G, Lee B S, et al. Thermal conductivity of phase-change material Ge2Sb2Te5[J]. Applied Physics Letters, 2006, 89(15): 151904.
|
17 |
Zhang Y P, Jiang Y. A simple method, the-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials[J]. Measurement Science and Technology, 1999, 10(3): 201.
|
18 |
Liu Y D, Zhou Y G, Tong M W, et al. Experimental study of thermal conductivity and phase change performance of nanofluids PCMs[J]. Microfluidics and Nanofluidics, 2009, 7(4): 579.
|
19 |
Şahan N, Fois M, Paksoy H. Improving thermal conductivity phase change materials—a study of paraffin nanomagnetite composites[J]. Solar Energy Materials and Solar Cells, 2015, 137: 61-67.
|
20 |
Chaichan M T, Kamel S H, Al-Ajeely A N M. Thermal conductivity enhancement by using nano-material in phase change material for latent heat thermal energy storage systems[J]. Saussurea, 2015, 5(6): 48-55.
|
21 |
Yin H, Gao X, Ding J, et al. Experimental research on heat transfer mechanism of heat sink with composite phase change materials[J]. Energy Conversion and Management, 2008, 49(6): 1740-1746.
|
22 |
Arasu A V, Sasmito A P, Mujumdar A S. Numerical performance study of paraffin wax dispersed with alumina in a concentric pipe latent heat storage system[J]. Thermal Science, 2013, 17: 419-430.
|
23 |
Wang J, Xie H, Guo Z, et al. Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles[J]. Applied Thermal Engineering, 2014, 73(2): 1541-1547.
|
24 |
Dhaidan N S, Khodadadi J M, Al-Hattab T A, et al. Experimental and numerical investigation of melting of phase change material/nanoparticle suspensions in a square container subjected to a constant heat flux[J]. International Journal of Heat and Mass Transfer, 2013, 66: 672-683.
|
25 |
Saha S, Nayak K C, Srinivasan K, et al. Cooling of electronics using phase change materials and thermal conductivity enhancers[C]//18th National & 7th ISHMTASME Heat Mass Transfer Conference. 2006: 4-6.
|
26 |
Krishna J, Kishore P S, Solomon A B. Heat pipe with nano enhanced-PCM for electronic cooling application[J]. Experimental Thermal and Fluid Science, 2017, 81: 84-92.
|
27 |
Sonawane S S, Khedkar R S, Wasewar K L, et al. Dispersions of CuO nanoparticles in paraffin prepared by ultrasonication: a potential coolant[J]. International Proceedings of Chemical, Biological & Environmental Engineering, 2012, 46: 48.
|
28 |
Teng T P, Yu C C. Characteristics of phase-change materials containing oxide nano-additives for thermal storage[J]. Nanoscale Research Letters, 2012, 7(1): 611.
|
29 |
钟勋, 俞小莉, 吴俊. 氧化铝有机纳米流体的流动传热基础特性[J]. 化工学报, 2009, 60(1): 35-41.
|
|
Zhong X, Yu X L, Wu J. Fluid flow and heat transfer characteristics of alumina organic nanofluid [J]. CIESC Journal, 2009, 60(1): 35-41.
|
30 |
Velraj R, Seeniraj R V. Heat transfer studies during solidification of PCM inside an internally finned tube[J]. Journal of Heat Transfer, 1999, 121(2): 493-497.
|