CIESC Journal ›› 2020, Vol. 71 ›› Issue (6): 2821-2829.DOI: 10.11949/0438-1157.20191040
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Lei ZOU1(),Guoqiang LIU1,2(),Miaomiao JIANG1,Zeheng YANG1,Weixin ZHANG1()
Received:
2019-09-19
Revised:
2020-01-06
Online:
2020-06-05
Published:
2020-06-05
Contact:
Weixin ZHANG
邹雷1(),刘国强1,2(),江苗苗1,杨则恒1,张卫新1()
通讯作者:
张卫新
作者简介:
邹雷(1996—),男,硕士研究生,基金资助:
CLC Number:
Lei ZOU, Guoqiang LIU, Miaomiao JIANG, Zeheng YANG, Weixin ZHANG. Preparation and modification of ZIF-67 derived Co/NC porous carbon composite for electrocatalytic oxygen evolution reaction[J]. CIESC Journal, 2020, 71(6): 2821-2829.
邹雷, 刘国强, 江苗苗, 杨则恒, 张卫新. ZIF-67衍生Co/NC多孔碳材料的改性及其电催化水氧化性能[J]. 化工学报, 2020, 71(6): 2821-2829.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 XRD patterns of ZIF-67(a), XRD patterns of Co/NC-700, Co/NC-800, Co/NC-900 and R-Co/NC-800(b), Raman spetra of Co/NC-700, Co/NC-800, Co/NC-900 and R-Co/NC-800(c), nitrogen adsorption-desorption isotherms and corresponding pore size of Co/NC-800 and R-Co/NC-800(d)
Fig. 6 CV curves of Co/NC-800 (a) and R-Co/NC-800(b); electrochemical double-layer capacitance of Co/NC-800 and R-Co/NC-800 (c); Stability test of Co/NC-800 and R-Co/NC-800(d)
1 | Robert F S. Hydrogen cars: fad or the future?[J]. Science, 2009, 324: 1257-1259. |
2 | Schoedel L, Ji Z, Yaghi O M. The role of metal-organic frameworks in a carbon-neutral energy cycle[J]. Nat. Energy, 2016, 1(4): 16034 |
3 | 毛宗强. 氢能——我国未来的清洁能源[J]. 化工学报, 2004, 55(1): 662-665. |
Mao Z Q. Hydrogen energy: the future clean energy in China[J]. Journal of Chemical Industry and Engineering(China), 2004, 55(1): 662-665. | |
4 | Lu W, Liu T, Xie L, et al. In situ derived Co-B nanoarray: a high-efficiency and durable 3D bifunctional electrocatalyst for overall alkaline water splitting[J]. Small, 2017, 13(32): 1700805. |
5 | Walter M G, Warren E L, Mckone J R, et al. Solar water splitting cells[J]. Chem. Rev., 2010, 110: 6446-6473. |
6 | Kim D, Sakimoto K K, Hong D, et al. Artificial photosynthesis for sustainable fuel and chemical production[J]. Angew. Chem. Int. Ed., 2015, 54: 3259-3266. |
7 | Yu B B, Wu W Q, Jin J V, et al. Facile synthesis of Co-based selenides for oxygen reduction reaction in acidic medium[J]. Int. J. Hydrogen Energ., 2016, 41: 8863-8870. |
8 | Liu Y W, Hua X M, Xiao C, et al. Heterogeneous spin states in ultrathin nanosheets induce subtle lattice distortion to trigger efficient hydrogen evolution[J]. J. Am. Chem. Soc., 2016, 138: 5087-5092. |
9 | Furukawa H, Ko N, Go Y B, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329: 424-428. |
10 | Hu H, Guan B Y, Xia B Y, et al. Designed formation of Co3O4/NiCo2O4 double-Shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties[J]. J. Am. Chem. Soc., 2015, 137(16): 5590-5595. |
11 | Dong D, Liu Y, Li J H. Co3O4 hollow polyhedrons as bifunctional electrocatalysts for reduction and evolution reactions of oxygen[J]. Part. Part. Syst. Charact., 2016, 33(12): 887-895. |
12 | Qian H, Tang J, Wang Z, et al. Synthesis of cobalt sulfide/sulfur doped carbon nanocomposites with efficient catalytic activity in the oxygen evolution reaction[J]. Chem-Eur. J., 2016, 22(50): 18259-18264. |
13 | Long J Y, Gong Y, Lin J H. Metal-organic framework-derived Co9S8@CoS@CoO@C nanoparticles as efficient electro- and photo-catalysts for the oxygen evolution reaction[J]. J. Mater. Chem. A, 2017, 5: 10495-10509. |
14 | Zhang Z, Hao J, Yang W, et al. Defect-rich CoP/nitrogen-doped carbon composites derived from a metal–organic framework: high-performance electrocatalysts for the hydrogen evolution reaction[J]. Chem. Cat. Chem., 2015, 7(13): 1920-1925. |
15 | Li H, Ke F, Zhu J F. MOF-derived ultrathin cobalt phosphide nanosheets as efficient bifunctional hydrogen evolution reaction and oxygen evolution reaction electrocatalysts[J]. Nanomaterials, 2018, 8(2): 89-100. |
16 | 水恒心, 潘冯弘康, 金田, 等. 双功能 yolk-shell 钴@钴氮碳掺杂氧电极催化剂[J]. 化工学报, 2018, 69(11): 4702-4712. |
Shui H X, Panfeng H K, Jin T, et al. York-shell Co@Co-N/C of bifunctional oxygen electrocatalysts[J]. CIESC Journal, 2018, 69(11): 4702-4712. | |
17 | Wu R, Wang D P, Rui X, et al. In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries[J]. Adv. Mater., 2015, 27(19): 3038-3044. |
18 | Torad N L, Salunkhe R R, Li Y, et al. Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67[J]. Chemistry, 2014, 20(26): 7895-900. |
19 | Li Y Q, Xu H B, Huang H Y, et al. Synthesis of Co-B in porous carbon using a metal–organic framework (MOF) precursor: a highly efficient catalyst for the oxygen evolution reaction[J]. Electrochem. Commun., 2018, 86: 140-144. |
20 | Hao Y C, Xu Y Q, Liu J F, et al. Nickel-cobalt oxides supported on Co/N decorated graphene as an excellent bifunctional oxygen catalyst[J]. J. Mater. Chem. A, 2017, 5: 5594-5600. |
21 | Wang S G, Qin J W, Meng T, et al. Metal-organic framework-induced construction of actiniae-like carbon nanotube assembly as advanced multifunctional electrocatalysts for overall water splitting and Zn-air batteries[J]. Nano Energy, 2017, 39: 626-638. |
22 | Chen B, Li R, Ma G, et al. Cobalt sulfide/N,S codoped porous carbon core-shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions[J]. Nanoscale, 2015, 7(48): 20674-20684. |
23 | You B, Jiang N, Sheng M L, et al. High-performance overall water splitting electrocatalysts derived from cobalt-based metal-organic frameworks[J]. Chem. Mater., 2015, 27(22): 7636-7642. |
24 | Xu K, Chen P, Li X, et al. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation[J]. J. Am. Chem. Soc., 2015, 137: 4119-4125. |
25 | Wang Y, Zhou T, Jiang K. et al. Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes[J]. Adv. Energy. Mater., 2014, 4: 1400696. |
26 | Chen P, Xu K, Fang Z, et al. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2015, 54: 14710-14714. |
27 | Diby N D, Duan Y Q, Grah P A, et al. Enhanced photoelectrochemical performance for hydrogen generation via introducing Ti3+ and oxygen vacancies into TiO2 nanorod arrays[J]. J. Mater. Sci-Mater. El., 2018, 29(23): 20236-20246. |
28 | Qin D D, Wang T, Song Y M, et al. Reduced monoclinic BiVO4 for improved photoelectrochemical oxidation of water under visible light[J]. Dalton. T., 2014, 43(21): 7691-7694. |
29 | Zhang W, Jiang X F, Wang X B, et al. Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF-67 crystals[J]. Angew. Chem. Int. Ed., 2017, 56: 8435-8440. |
30 | Xu G, Xu G C, Ban J J, et al. Cobalt and cobalt oxides N-codoped porous carbon derived from metal organic framework as bifunctional catalyst for oxygen reduction and oxygen evolution reactions[J]. J. Colloid Interf. Sci., 2018, 521: 141-149. |
31 | Liu S J, Deng T, Hu X Y, et al. Increasing surface active Co2+ sites of MOF-derived Co3O4 for enhanced supercapacitive performance via NaBH4 reduction[J]. Electrochim. Acta, 2018, 289: 319-323. |
32 | Li J G, Xie K F, Sun H C, et al. Template-directed bifunctional dodecahedral CoP/CN@MoS2 electrocatalyst for high efficient water splitting[J]. ACS Appl. Mater. Interfaces, 2019, 11: 36649-36657. |
33 | Tian L L, He G G, Cai Y H, et al. Co3O4 based nonenzymatic glucose sensor with high sensitivity and reliable stability derived from hollow hierarchical architecture[J]. Nanotechnology, 2018, 29(7): 1-11. |
34 | Wei R J, Fang M, Dong G F, et al. High-index faceted porous Co3O4 nanosheets with oxygen vacancies for highly efficient water oxidation[J]. ACS Appl. Mater. Interfaces, 2018, 10: 7079-7086. |
35 | Liang Z Z, Zhang C C, Yuan H T, et al. PVP-assisted transformation of metal-organic framework into Co-embedded N-enriched meso/microporous carbon materials as bifunctional electrocatalysts[J]. Chem. Commun., 2018, 54: 7519-7522. |
[1] | Runmiao GAO, Mengjie SONG, Enyuan GAO, Long ZHANG, Xuan ZHANG, Keke SHAO, Zekang ZHEN, Zhengyong JIANG. Review on greenhouse gas reduction related to refrigerants in cold chain [J]. CIESC Journal, 2023, 74(S1): 1-7. |
[2] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[3] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[4] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[5] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[6] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[7] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[8] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[9] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[10] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[11] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[12] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[13] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[14] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[15] | Zhangning CUI, Zixuan HU, Lei WU, Jun ZHOU, Gan YE, Tiantian LIU, Qiuli ZHANG, Yonghui SONG. Research progress on the water resistance of degradable cellulose-based materials [J]. CIESC Journal, 2023, 74(6): 2296-2307. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||