CIESC Journal ›› 2020, Vol. 71 ›› Issue (5): 2024-2034.DOI: 10.11949/0438-1157.20191101
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Xiaolan HUA1(),Yanan ZHANG1,Zhizhong DONG2,3,Yong WANG2,Xiao Dong CHEN1,Jie XIAO1()
Received:
2019-10-07
Revised:
2020-02-29
Online:
2020-05-05
Published:
2020-05-05
Contact:
Jie XIAO
华晓蓝1(),张亚南1,董志忠2,3,王勇2,陈晓东1,肖杰1()
通讯作者:
肖杰
作者简介:
华晓蓝(1982—),女,硕士研究生,基金资助:
CLC Number:
Xiaolan HUA, Yanan ZHANG, Zhizhong DONG, Yong WANG, Xiao Dong CHEN, Jie XIAO. Simulation and analysis of mass transfer and absorption process intensification by villi movement[J]. CIESC Journal, 2020, 71(5): 2024-2034.
华晓蓝, 张亚南, 董志忠, 王勇, 陈晓东, 肖杰. 模拟分析绒毛运动对传质和吸收过程的强化[J]. 化工学报, 2020, 71(5): 2024-2034.
Add to citation manager EndNote|Ris|BibTeX
变量及参数 | 取值 | 数据来源 |
---|---|---|
模拟区域宽度L | 1 mm | 式(1) |
模拟区域高度H | 2 mm | — |
绒毛高度h | 300~900 μm | [32] |
绒毛宽度D | 160 μm | [33] |
绒毛分布密度 | 25 mm-2 | [3] |
绒毛间初始距离w0 | 8 μm | — |
t=T/2时绒毛间距离w | 40 μm | 式(1) |
绒毛运动周期T | 4~10 s | [34] |
体温下葡萄糖扩散系数D | 8.97×10-10 m2/s | — |
葡萄糖源的浓度Cb | 200 mol/m3 | [35] |
Table 1 Values of parameters and variables in model
变量及参数 | 取值 | 数据来源 |
---|---|---|
模拟区域宽度L | 1 mm | 式(1) |
模拟区域高度H | 2 mm | — |
绒毛高度h | 300~900 μm | [32] |
绒毛宽度D | 160 μm | [33] |
绒毛分布密度 | 25 mm-2 | [3] |
绒毛间初始距离w0 | 8 μm | — |
t=T/2时绒毛间距离w | 40 μm | 式(1) |
绒毛运动周期T | 4~10 s | [34] |
体温下葡萄糖扩散系数D | 8.97×10-10 m2/s | — |
葡萄糖源的浓度Cb | 200 mol/m3 | [35] |
Fig.2 Flow field and concentration field at representative time instants during one movement cycle (velocity field is plotted using colored streamlines and white arrows, arrow size is proportional to magnitude of fluid velocity, color of streamline represents velocity)
Fig.3 Distribution of absorption flux along villi surface at representative time instants during one movement cycle plotted as solid lines (comparison with distribution at time 0, dashed lines)
Fig.5 Distribution of absorption flux along villi surface at different time instants during one movement cycle (comparison among cases with different cycle period values)
Fig.6 Evolution of Peclet number, mass-transfer enhancement factor and absorption amount during one movement cycle (comparison among cases with different cycle period values)
Fig.7 Distribution of absorption flux along villi surface at different time instants during one movement cycle (comparison among cases with different villi lengths)
Fig.8 Evolution of Peclet number, mass-transfer enhancement factor and absorption amount during one movement cycle (comparison among cases with different villi lengths)
1 | Smith M E, Morton D G. The Digestive System[M]. 2nd ed. Singapore: Elsevier Pte Ltd., 2010. |
2 | Lim Y F, de Loubens C, Love R J, et al. Flow and mixing by small intestine villi[J]. Food Funct., 2015, 6: 1787-1795. |
3 | Lentle R G, Janssen P W M, de Loubens C, et al. Mucosal microfolds augment mixing at the wall of the distal ileum of the brushtail possum[J]. Neurogastroenterol. Motil., 2013, 25: e700-881-888. |
4 | Wang Y X, Brasseur J G, Banco G G, et al. A multiscale lattice Boltzmann model of macro- to micro-scale transport, with applications to gut function[J]. Phil. Trans. R. Soc. A, 2010, 368: 2863-2880. |
5 | Wang Y X, Brasseur J G. Three-dimensional mechanisms of macro-to-micro-scale transport and absorption enhancement by gut villi motions[J]. Phys. Rev. E, 2017, 95: 062412-1-8. |
6 | Du P, Paskaranandavadivel N, Angeli T R, et al. The virtual intestine: in silico modeling of small intestinal electrophysiology and motility and the applications[J]. WIREs System Biology and Medicine, 2016, 8: 69-85. |
7 | Stoll B R, Batycky R P, Leipold H R, et al. A theory of molecular absorption from the small intestine[J]. Chem. Eng. Sci., 2000, 55: 473-489. |
8 | Grivel M L, Ruckebusch Y. The propagation of segmental contractions along the small intestine[J]. J. Physiol., 1972, 227: 611-625. |
9 | Avvari R K. Effect of local longitudinal shortening on the transport of luminal contents through small intestine[J]. Acta Mechanica Sinica, 2019, 35: 45-60. |
10 | Love R J, Lentle R G, Asvarujanon P, et al. An expanded finite element model of the intestinal mixing of digesta[J]. Food Dig., 2013, 4: 26-35. |
11 | Tharakan A, Norton I T, Fryer P J, et al. Mass transfer and nutrient absorption in a simulated model of small intestine[J]. Journal of Food Science, 2010, 75: E339-E346. |
12 | Tharakan A. Modeling of physical and chemical processes in the small intestine[D]. UK: University of Birmingham, 2008. |
13 | Sinnott M D, Cleary P W, Harrison S M. Peristaltic transport of a particulate suspension in the small intestine[J]. Applied Mathematical Modeling, 2017, 44: 143-159. |
14 | Lentle R G, de Loubens C. A review of mixing and propulsion of chyme in the small intestine: fresh insights from new methods[J]. J. Comp. Physiol. B, 2015, 185: 369-387. |
15 | de Loubens C, Lentle R G, Love R J, et al. Fluid mechanical consequences of pendular activity, segmentation and pyloric outflow in the proximal duodenum of the rat and the guinea pig[J]. J. R. Soc. Interface, 2013, 10: 20130027-1-12. |
16 | de Loubens C, Lentle R G, Hulls C, et al. Characterisation of mixing in the proximal duodenum of the rat during longitudinal contractions and comparison with a fluid mechanical model based on spatiotemporal motility data[J]. PLOS One, 2014, 9: e95000-1-6. |
17 | Lim Y F, Lentle R G, Janssen P W M, et al. Determination of villous rigidity in the distal ileum of the possum (trichosurus vulpecula)[J]. PLOS One, 2014, 9: e100140-1-11. |
18 | Lim Y F, Williams M A K, Lentle R G, et al. An exploration of the microrheological environment around the distal ileal villi and proximal colonic mucosa of the possum (Trichosurus vulpecula)[J]. J. R. Soc. Interface, 2013, 10: 20121008-1-11. |
19 | Lentle R G, Janssen P W M. The Physical Processes of Digestion[M]. New York: Springer Science, 2011. |
20 | Lim Y F. Factors influencing mixing and mass transfer in the small intestine [D]. New Zealand: Massey University, 2015. |
21 | Cani P D. Human gut microbiome: hopes, threats and promises [J]. Gut, 2018, 67: 1716-1725. |
22 | Wang D D, Hu F B. Precision nutrition for prevention and management of type 2 diabetes[J]. Lancet Diabetes Endocrinol., 2018, 6: 416-426. |
23 | 秦逸凡, 肖杰, 陈晓东. 血糖预测生理模型及化工建模策略[J]. 化工进展, 2019, 38(1): 545-555. |
Qin Y F, Xiao J, Chen X D. Blood glucose prediction based on physiological and chemical reactor models[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 545-555. | |
24 | Liu M H, Xiao J, Chen X D. A soft-elastic reactor (SER) inspired by the animal upper digestion tract[J]. Chemical Engineering and Technology, 2018, 41: 1051-1056. |
25 | 刘明慧, 邹超, 肖杰, 等. 基于仿生学的柔性反应器[J]. 化工学报, 2018, 69(1): 414-422. |
Liu M H, Zou C, Xiao J, et al. Soft-elastic bionic reactor[J]. CIESC Journal, 2018, 69(1): 414-422. | |
26 | Xiao J, Zou C, Liu M H, et al. Mixing in a soft-elastic reactor (SER) characterized using an RGB based image analysis method[J]. Chem. Eng. Sci., 2018, 181: 272-285. |
27 | Delaplace G, Gu Y Y, Liu M H, et al. Homogenization of liquids inside a new soft elastic reactor: revealing mixing behavior through dimensional analysis[J]. Chem. Eng. Sci., 2018, 192: 1071-1080. |
28 | Li C Y, Xiao J, Zhang Y, et al. Mixing in a soft-elastic reactor (SER): a simulation study[J]. Can. J. Chem. Eng., 2019, 97: 676-686. |
29 | Moxon T E, Gouseti O, Bakalis S. In silico modeling of mass transfer & absorption in the human gut[J]. J. Food Eng., 2016, 176: 110-120. |
30 | Zhang Y N, Wu P, Jeantet R, et al. How motility can enhance mass transfer and absorption in the duodenum: taking the structure of the villi into account[J]. Chem. Eng. Sci., 2020, 213: 115406-1-13. |
31 | COMSOL Multiphysics® v.5.4 [EB/OL].[2019]. . |
32 | Tortora G J, Derrickson B H. Principles of Anatomy and Physiology[M]. 15th ed. US: Wiley, 2018. |
33 | Guseinov T S, Guseinova S T. Effect of dehydration on morphogenesis of the lymphatic network and immune structures in the small intestine[J]. Bull. Exp. Biol. Med., 2008, 145: 755-757. |
34 | Marieb E N, Keller S M. Essentials of Human Anatomy & Physiology[M]. 12th ed. US: Pearson, 2017. |
35 | Leiper J B. Fate of ingested fluids: factors affecting gastric emptying and intestinal absorption of beverages in humans[J]. Nutrition Reviews, 2015, 73: 57-72. |
[1] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[2] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[3] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[4] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[5] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[6] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[7] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[8] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[9] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[10] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[11] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[12] | Linjing YUE, Yihan LIAO, Yuan XUE, Xuejie LI, Yuxing LI, Cuiwei LIU. Study on influence of pit defects on cavitation flow characteristics of throat of thick orifice plates [J]. CIESC Journal, 2023, 74(8): 3292-3308. |
[13] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[14] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[15] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||