CIESC Journal ›› 2020, Vol. 71 ›› Issue (1): 320-328.DOI: 10.11949/0438-1157.20191133
• Separation engineering • Previous Articles Next Articles
Miao CHANG1(),Lei LIU1,Qingyuan YANG1,Dahuan LIU1(),Chongli ZHONG1,2()
Received:
2019-10-08
Revised:
2019-10-18
Online:
2020-01-05
Published:
2020-01-05
Contact:
Dahuan LIU,Chongli ZHONG
常苗1(),刘磊1,阳庆元1,刘大欢1(),仲崇立1,2()
通讯作者:
刘大欢,仲崇立
作者简介:
常苗(1993—),男,硕士研究生,基金资助:
CLC Number:
Miao CHANG, Lei LIU, Qingyuan YANG, Dahuan LIU, Chongli ZHONG. Study on efficient separation of SF6/N2 mixture using a hydrothermally stable metal-organic framework[J]. CIESC Journal, 2020, 71(1): 320-328.
常苗, 刘磊, 阳庆元, 刘大欢, 仲崇立. 水热稳定金属-有机骨架材料用于高效分离SF6/N2混合物的研究[J]. 化工学报, 2020, 71(1): 320-328.
Add to citation manager EndNote|Ris|BibTeX
Parameter | SF6 | N2 |
---|---|---|
q satA/(cm3/g) | 24.065 | 0.256 |
b A/Pa-1 | 221729.490 | 1739.130 |
q satB/(cm3/g) | 30.910 | 25266.260 |
b B/Pa-1 | 956.938 | 0.0835 |
R 2 | 0.9992 | 0.9997 |
Table 1 Fitted parameters of SF6 and N2 sorption data of Cu-MOF-OMe at 298 K
Parameter | SF6 | N2 |
---|---|---|
q satA/(cm3/g) | 24.065 | 0.256 |
b A/Pa-1 | 221729.490 | 1739.130 |
q satB/(cm3/g) | 30.910 | 25266.260 |
b B/Pa-1 | 956.938 | 0.0835 |
R 2 | 0.9992 | 0.9997 |
Adsorbents | Selectivity for SF6/N2 mixture (0.1∶0.9) | SF6 uptake at 1.0 bar/(cm3/g) | SSP | Q st for SF6/ (kJ/mol) | Q st for N2/ (kJ/mol) | Ref. |
---|---|---|---|---|---|---|
Mg-MOF-74 | 18 | 143.8 | 95 | 32.0 | [ | |
Co-MOF-74 | 34 | 119.6 | 253 | 40.0 | [ | |
Zn-MOF-74 | 46 | 82.2 | 447 | 27.0 | [ | |
Ca-A | 28.5 | 50.4 | 434 | 37.0 | [ | |
KKUST-1 | 65 | 115.6 | 446 | 25.0 | [ | |
activated carbon | 30 | 54.2 | 120 | 5.0 | [ | |
CNHs① | 44 | 83.3 | [ | |||
MIL-100-Fe | 24 | 37.1 | 100 | 21.0 | 13.0 | [ |
UIO-66-2Br | 220 | 17.9 | 45 | 40.6 | [ | |
UIO-66 | 74 | 32.5 | 156 | 33.8 | 14.0 | [ |
Zeolite-13X | 44 | 39.4 | 162 | 29.5 | 28.0 | [ |
PC-CaCit | 30 | 80.9 | 66 | 30.0 | [ | |
PC-MgCit | 30 | 74.8 | 133 | 24.6 | [ | |
CC3α | 74 | 50.4 | 434 | 37.0 | [ | |
Cu-MOF-OMe | 361 | 38 | 780 | 57.8 | 18.0 | this work |
Table 2 Comparison of IAST selectivity, uptake capacity of SF6, SSP values, adsorption heat of SF6 and N2 in different materials at 298 K and 1 bar
Adsorbents | Selectivity for SF6/N2 mixture (0.1∶0.9) | SF6 uptake at 1.0 bar/(cm3/g) | SSP | Q st for SF6/ (kJ/mol) | Q st for N2/ (kJ/mol) | Ref. |
---|---|---|---|---|---|---|
Mg-MOF-74 | 18 | 143.8 | 95 | 32.0 | [ | |
Co-MOF-74 | 34 | 119.6 | 253 | 40.0 | [ | |
Zn-MOF-74 | 46 | 82.2 | 447 | 27.0 | [ | |
Ca-A | 28.5 | 50.4 | 434 | 37.0 | [ | |
KKUST-1 | 65 | 115.6 | 446 | 25.0 | [ | |
activated carbon | 30 | 54.2 | 120 | 5.0 | [ | |
CNHs① | 44 | 83.3 | [ | |||
MIL-100-Fe | 24 | 37.1 | 100 | 21.0 | 13.0 | [ |
UIO-66-2Br | 220 | 17.9 | 45 | 40.6 | [ | |
UIO-66 | 74 | 32.5 | 156 | 33.8 | 14.0 | [ |
Zeolite-13X | 44 | 39.4 | 162 | 29.5 | 28.0 | [ |
PC-CaCit | 30 | 80.9 | 66 | 30.0 | [ | |
PC-MgCit | 30 | 74.8 | 133 | 24.6 | [ | |
CC3α | 74 | 50.4 | 434 | 37.0 | [ | |
Cu-MOF-OMe | 361 | 38 | 780 | 57.8 | 18.0 | this work |
吸附分子 | σ/ ? | (ε/k b)/K | 电荷 /e |
---|---|---|---|
SF6 | 4.615 | 238.89 | — |
N2_N | 3.32 | 36.4 | -0.482 |
N2_com | — | — | 0.964 |
Table 3 Force field information of SF6 and N2
吸附分子 | σ/ ? | (ε/k b)/K | 电荷 /e |
---|---|---|---|
SF6 | 4.615 | 238.89 | — |
N2_N | 3.32 | 36.4 | -0.482 |
N2_com | — | — | 0.964 |
1 | Tsai W T . The decomposition products of sulfur hexafluoride (SF6): reviews of environmental and health risk analysis[J]. Fluorine Chem., 2007, 128: 1345-1352. |
2 | Kim M B , Lee S J , Lee C Y , et al . High SF6 selectivities and capacities in isostructural metal-organic frameworks with proper pore sizes and highly dense unsaturated metal sites[J]. Micropor. Mesopor. Mat., 2014, 190: 356-361. |
3 | Christophorou L G , Vanbrunt R J . SF6/N2 mixtures - basic and HV insulation properties[J]. IEEE Trans. Dielectr. Electr. Insul., 1995, 2: 952-1003. |
4 | Yamamoto O , Takuma T , Kinouchi M . Recovery of SF6 from N2/SF6 gas mixtures by using a polymer membrane[J]. IEEE Electr. Insul. Mag., 2002, 18: 32-37. |
5 | Imai T , Inohara T , Toyoda M . Use of zeolite filter in portable equipment for recovering SF6 in SF6/N2 mixtures[J]. IEEE Trans. Dielectr. Electr. Insul., 2004, 11: 166-173. |
6 | Toyoda M , Murase H , Imai T , et al . SF6 reclaimer from SF6/N2 mixtures by gas separation with molecular sieving effect[J]. IEEE Trans. Power Deliv., 2003, 18: 442-448. |
7 | Senkovska I , Barea E , Navarro J A R , et al . Adsorptive capturing and storing greenhouse gases such as sulfur hexafluoride and carbon tetrafluoride using metal-organic frameworks[J]. Micropor. Mesopor. Mat., 2012, 156: 115-120. |
8 | Lee E K , Lee J D , Lee H J , et al . Pure SF6 and SF6 -N2 mixture gas hydrates equilibrium and kinetic characteristics[J]. Environ. Sci. Technol., 2009, 43: 7723-7727. |
9 | Cha I , Lee S , Lee J D , et al . Separation of SF6 from gas mixtures using gas hydrate formation[J]. Environ. Sci. Technol., 2010, 44: 6117-6122. |
10 | Skarmoutsos I , Eddaoudi M , Maurin G . Highly tunable sulfur hexafluoride separation by interpenetration control in metal organic frameworks[J]. Micropor. Mesopor. Mat., 2019, 281: 44-49. |
11 | Chuah C Y , Goh K L , Bae T H . Hierarchically structured HKUST‑1 nanocrystals for enhanced SF6 capture and recovery[J]. J. Phys. Chem. C, 2017, 121: 6748-6755. |
12 | Skarmoutsos I , Tamiolakis G , Froudakis G E . Highly selective separation and adsorption-induced phase transition of SF6 -N2 fluid mixtures in three-dimensional carbon nanotube networks[J]. J. Supercrit. Fluids, 2016, 113: 89-95. |
13 | Takase A , Kanoh H , Ohba T . Wide carbon nanopores as efficient sites for the separation of SF6 from N2 [J]. Sci. Rep., 2015, 5: 11994. |
14 | Kim P J , You Y W , Park H , et al . Separation of SF6 from SF6/N2 mixture using metal-organic framework MIL-100(Fe) granule[J]. Chem. Eng. J., 2015, 262: 683-690. |
15 | Kim M B , Kim K M , Kim T H , et al . Highly selective adsorption of SF6 over N2 in a bromine-functionalized zirconium-based metal-organic framework[J]. Chem. Eng. J., 2018, 339: 223-229. |
16 | Kim M B , Yoon T U , Hong D Y , et al . High SF6/N2 selectivity in a hydrothermally stable zirconium-based metal-organic framework[J]. Chem. Eng. J., 2015, 276: 315-321. |
17 | Sun R , Tai C W , Strømme M , et al . Hierarchical porous carbon synthesized from novel porous amorphous calcium or magnesium citrate with enhanced SF6 uptake and SF6/N2 selectivity[J]. ACS Appl. Nano Mater., 2019, 2: 778-789. |
18 | Hasell T , Miklitz M , Stephenson A , et al . Porous organic cages for sulfur hexafluoride separation[J]. J. Am. Chem. Soc., 2016, 138: 1653-1659. |
19 | Fang X K , Hu X , Maenhout G J , et al . Sulfur hexafluoride (SF6) emission estimates for china: an inventory for 1990—2010 and a projection to 2020[J]. Environ. Sci. Technol., 2013, 47: 3848-3855. |
20 | Chiang Y C , Wu P Y . Adsorption equilibrium of sulfur hexafluoride on multi-walled carbon nanotubes[J]. J. Hazard. Mater., 2010, 178: 729-738. |
21 | Mohindra V , Chae H , Sawin H H , et al . Abatement of perfluorocompounds (PFC’s) in a microwave tubular reactor using O as an additive gas[J]. IEEE Trans. Plasma Sci., 1997, 10: 399-407. |
22 | Ravishankara A R , Solomon S , Turnipseed A A , et al . Atmospheric lifetimes of long-lived halogenated species[J]. Science, 1993, 259:194-199. |
23 | Builes S , Roussel T , Vega L F . Optimization of the separation of sulfur hexafluoride and nitrogen by selective adsorption using Monte Carlo simulations[J]. AIChE J. 2011, 57: 962-974. |
24 | Kim D H , Ko Y H , Kim T H , et al . Separation of N2/SF6 binary mixtures using polyethersulfone (PESf) hollow fiber membrane[J]. Korean J. Chem. Eng., 2012, 29: 1081-1085. |
25 | Cho W S , Lee K H , Chang H J , et al . Evaluation of pressure-temperature swing adsorption for sulfur hexafluoride (SF6) recovery from SF6 and N2 gas mixture[J]. Korean J. Chem. Eng., 2011, 28: 2196-2201. |
26 | Ho M T , Allinson G W , Wiley D E . Reducing the cost of CO2 capture from flue gases using pressure swing adsorption[J]. Ind. Eng. Chem. Res., 2008, 47: 4883-4890. |
27 | Wiersum A D , Chang J S , Serre C , et al . An adsorbent performance indicator as a first step evaluation of novel sorbents for gas separations: application to metal-organic frameworks[J]. Langmuir, 2013, 29: 3301-3309. |
28 | Tong M M , Lan Y S , Yang Q Y , et al . Exploring the structure-property relationships of covalent organic frameworks for noble gas separations[J]. Chem. Eng. Sci., 2017, 168: 456-464. |
29 | Cui X L , Chen K J , Xing H B , et al . Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene[J]. Science, 2016, 353:141-144. |
30 | Li B , Cui X L , O’Nolan D , et al . An ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivity[J]. Adv. Mater., 2017, 29: 1704210. |
31 | Yang L F , Cui X L , Yang Q W , et al . A single-molecule propyne trap: highly efficient removal of propyne from propylene with anion-pillared ultramicroporous materials[J]. Adv. Mater., 2018, 30: 1705374. |
32 | Li L B , Wen H M , He C H , et al . A metal-organic framework with suitable pore size and specific functional sites for the removal of trace propyne from propylene[J]. Angew. Chem. Int. Ed., 2018, 57: 15183-15188. |
33 | Furukawa H , Cordova K E , O’Keeffe M , et al . The chemistry and application of metal-organic frameworks[J]. Science, 2013, 341: 974-986. |
34 | Mueller U , Schubert M , Teich F , et al . Metal-organic frameworks-prospective industrial applications[J]. J. Mater. Chem., 2006, 16: 626-636. |
35 | Bae Y S , Snurr R Q . Development and evaluation of porous materials for carbon dioxide separation and capture[J]. Angew. Chem. Int. Ed., 2011, 50: 11586-11596. |
36 | Biswas S , Vanpoucke D E P , Verstraelen T , et al . New functionalized metal-organic frameworks MIL-47-X (X = —Cl, —Br, —CH3, —CF3, —OH, —OCH3): synthesis, characterization, and CO2 adsorption properties[J]. J. Phys. Chem. C, 2013, 117: 22784-22796. |
37 | Au V K M , Nakayashiki K , Huang H B , et al . Stepwise expansion of layered metal-organic frameworks for nonstochastic exfoliation into porous nanosheets[J]. J. Am. Chem. Soc., 2019, 141: 53-57. |
38 | Bachman J E , Reed D A , Kapelewski M T , et al . Enabling alternative ethylene production through its selective adsorption in the metal-organic framework Mn2(m-dobdc)[J]. Energy Environ. Sci., 2018, 11: 2423-2431. |
39 | Wang K K , Huang H L , Liu D H , et al . Covalent triazine-based frameworks with ultramicropores and high nitrogen contents for highly selective CO2 capture[J]. Environ. Sci. Technol., 2016, 50; 4869-4876. |
40 | Breneman C M , Wiberg K B . Determining atom-centered monopoles from molecular electrostatic potentials: the need for high sampling density in formamide conformational analysis[J]. J. Comput. Chem., 1990, 11: 361-373. |
41 | Dellis D , Samios J . Molecular force field investigation for sulfur hexafluoride: a computer simulation study[J]. Fluid Phase Equilibria, 2010, 291: 81-89. |
42 | Potoff J J , Siepmann J I . Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen[J]. AIChE J., 2001, 47: 1676-1682. |
43 | Rappé A K , Casewit C J , Colwell K S , et al . UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations[J]. J. Am. Chem. Soc., 1992, 114: 10024-10035. |
44 | Vlugt T J H , García P E , Dubbeldam D , et al . Computing the heat of adsorption using molecular simulations: the effect of strong coulombic interactions[J]. J. Chem. Theory Comput., 2008, 4: 1107-1118. |
45 | Chen Y J , Li P , Modica J A , et al . Acid-resistant mesoporous metal-organic framework toward oral insulin delivery: protein encapsulation, protection, and release[J]. J. Am. Chem. Soc., 2018, 140: 5678-5681 |
46 | Li L Y , Yang L F , Wang J W , et al . Highly efficient separation of methane from nitrogen on a squarate-based metal-organic framework[J]. AIChE J., 2018, 64: 3681-3689. |
47 | Hu J L , Sun T J , Liu X W , et al . Separation of CH4 /N2 mixtures in metal-organic frameworks with 1D micro-channels[J]. RSC Adv., 2016, 6: 64039-64046. |
48 | Lin R B , Wu H , Li L B , et al . Boosting ethane/ethylene separation within isoreticular ultramicroporous metal-organic frameworks[J]. J. Am. Chem. Soc., 2018, 140: 12940-12946. |
[1] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[2] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[3] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[4] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[5] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[6] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[7] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[8] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[9] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[10] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[11] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[12] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
[13] | Jianhua ZHANG, Mengmeng CHEN, Yawen SUN, Yongzhen PENG. Efficient nitrogen and phosphorus removal from domestic wastewater via simultaneous partial nitritation and phosphorus removal combined Anammox [J]. CIESC Journal, 2023, 74(5): 2147-2156. |
[14] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[15] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||