CIESC Journal ›› 2020, Vol. 71 ›› Issue (1): 92-105.DOI: 10.11949/0438-1157.20191176
• Reviews and monographs • Previous Articles Next Articles
Chengmin GUI(),Ruisong ZHU,Jie ZHANG,Zhigang LEI()
Received:
2019-10-11
Revised:
2019-11-01
Online:
2020-01-05
Published:
2020-01-05
Contact:
Zhigang LEI
通讯作者:
雷志刚
作者简介:
桂成敏(1997—),男,硕士研究生, 基金资助:
CLC Number:
Chengmin GUI, Ruisong ZHU, Jie ZHANG, Zhigang LEI. Progress on ionic liquids for gas drying[J]. CIESC Journal, 2020, 71(1): 92-105.
桂成敏, 朱瑞松, 张傑, 雷志刚. 离子液体气体干燥技术的研究进展[J]. 化工学报, 2020, 71(1): 92-105.
Add to citation manager EndNote|Ris|BibTeX
1 | 邹才能, 赵群, 张国生, 等. 能源革命:从化石能源到新能源[J]. 天然气工业, 2016, 36(1): 1-10. |
Zou C N, Zhao Q, Zhang G S, et al. Energy revolution: from fossil energy to new energy[J]. Nature Gas Industry, 2016, 36(1): 1-10. | |
2 | 高振宇, 高鹏, 周颖. 新形势下中国天然气供需重心变化情况分析[J]. 中外能源, 2019, 24(6): 1-7. |
Gao Z Y, Gao P, Zhou Y. Analysis on the change of China s natural gas supply and demand center under the new situation[J]. Sino-Global Energy, 2019, 24(6): 1-7. | |
3 | Ahmadi M A, Soleimani R, Bahadori A. A computational intelligence scheme for prediction equilibrium water dew point of natural gas in TEG dehydration systems[J]. Fuel, 2014, 137: 145-154. |
4 | Petropoulou E G, Voutsas E C. Thermodynamic modeling and simulation of natural gas dehydration using triethylene glycol with the UMR-PRU model[J]. Industrial & Engineering Chemistry Research, 2018, 57(25): 8584-8604. |
5 | Kong Z Y, Mahmoud A, Liu S, et al. Development of a techno-economic framework for natural gas dehydration via absorption using tri-ethylene glycol: a comparative study on conventional and stripping gas dehydration processes[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(3): 955-963. |
6 | Kolwas M, Jakubczyk D, Do D T, et al. Evaporation of a free microdroplet of a binary mixture of liquids with different volatilities[J]. Soft Matter, 2019, 15(8): 1825-1832. |
7 | Netusil M, Ditl P. Comparison of three methods for natural gas dehydration [J]. Journal of Natural Gas Chemistry, 2011, 20(5): 471-476. |
8 | Wang X, Zeng S, Wang J, et al. Selective separation of hydrogen sulfide with pyridinium-based ionic liquids[J]. Industrial & Engineering Chemistry Research, 2018, 57(4): 1284-1293. |
9 | Jiang Y, Taheri M, Yu G, et al. Experiments, modeling, and simulation of CO2 dehydration by ionic liquid, triethylene glycol, and their binary mixtures[J]. Industrial & Engineering Chemistry Research, 2019, 58(34): 15588-15597. |
10 | Paduszyński K, Królikowski M. An effect of cation s cyano group on interactions between organic solutes and ionic liquids elucidated by thermodynamic data at infinite dilution[J]. Journal of Molecular Liquids, 2017, 243: 726-736. |
11 | 张志刚, 张德彪, 张亲亲, 等. 基于COSMO-RS方法筛选离子液体分离乙酸乙酯-乙腈共沸物[J]. 化工学报, 2019, 70(1): 146-153. |
Zhang Z G, Zhang D B, Zhang Q Q, et al. Screening ionic liquid separation of ethyl acetate-acetonitrile azeotrope based on COSMO-RS method[J]. CIESC Journal, 2019, 70(1): 146-153. | |
12 | Ferrarini F, Flôres G B, Muniz A R, et al. An open and extensible sigma-profile database for COSMO-based models[J]. AIChE Journal, 2018, 64(9): 3443-3455. |
13 | Safamirzaei M, Modarress H. Correlating and predicting low pressure solubility of gases in [BMIM][BF4] by neural network molecular modeling[J]. Thermochimica Acta, 2012, 545: 125-130. |
14 | Huang Y, Wan Z, Yang Z, et al. Concentration-dependent hydrogen bond behavior of ethylammonium nitrate protic ionic liquid-water mixtures explored by molecular dynamics simulations[J]. Journal of Chemical & Engineering Data, 2017, 62(8): 2340-2349. |
15 | Krannich M, Heym F, Jess A. Characterization of six hygroscopic ionic liquids with regard to their suitability for gas dehydration: density, viscosity, thermal and oxidative stability, vapor pressure, diffusion coefficient, and activity coefficient of water[J]. Journal of Chemical & Engineering Data, 2016, 61(3): 1162-1176. |
16 | Krannich M, Heym F, Jess A. Continuous gas dehydration using the hygroscopic ionic liquid [EMIM][MeSO3] as a promising alternative absorbent[J]. Chemical Engineering & Technology, 2016, 39(2): 343-353. |
17 | Lei Z, Zhang J, Li Q, et al. UNIFAC model for ionic liquids[J]. Industrial & Engineering Chemistry Research, 2009, 48(5): 2697-2704. |
18 | Santiago R S, Santos G R, Aznar M. Liquid–liquid equilibrium in ternary ionic liquid systems by UNIFAC: new volume, surface area and interaction parameters[J]. Fluid Phase Equilibria, 2010, 295(1): 93-97. |
19 | Chong F K, Foo D C Y, Eljack F T, et al. Ionic liquid design for enhanced carbon dioxide capture by computer-aided molecular design approach[J]. Clean Technologies and Environmental Policy, 2015, 17(5): 1301-1312. |
20 | Nebig S, Gmehling J. Prediction of phase equilibria and excess properties for systems with ionic liquids using modified unifac: typical results and present status of the modified UNIFAC matrix for ionic liquids[J]. Fluid Phase Equilibria, 2011, 302(1/2): 220-225. |
21 | Sun G, Huang W, Zheng D, et al. Vapor-liquid equilibrium prediction of ammonia-ionic liquid working pairs of absorption cycle using UNIFAC model[J]. Chinese Journal of Chemical Engineering, 2014, 22(1): 72-78. |
22 | Yu G, Dai C, Lei Z. Modified UNIFAC-Lei model for ionic liquid-methane systems[J]. Industrial & Engineering Chemistry Research, 2018, 57(20): 7064-7076. |
23 | Shang W, Cui X, Yu X, et al. Isobaric vapor-liquid equilibrium for methanol+methyl acetate with ionic liquids [OMMIM][TF2N] and [OMIM][TF2N] as entrainers at 101.3 kPa[J]. Fluid Phase Equilibria, 2018, 473: 90-97. |
24 | Zhu Z, Hu J, Wang Y, et al. Prediction of ammonia solubility in ionic liquids using UNIFAC model[J]. Chemical Engineering Transactions, 2017, 61: 655-660. |
25 | Lei Z, Dai C, Liu X, et al. Extension of the UNIFAC model for ionic liquids[J]. Industrial & Engineering Chemistry Research, 2012, 51(37): 12135-12144. |
26 | Domańska U, Mazurowska L. Solubility of 1,3-dialkylimidazolium chloride or hexafluorophosphate or methylsulfonate in organic solvents: effect of the anions on solubility[J]. Fluid Phase Equilibria, 2004, 221(1/2): 73-82. |
27 | Xue Z, Mu T, Gmehling J. Comparison of the a priori COSMO-RS models and group contribution methods: original UNIFAC, modified UNIFAC(Do), and modified UNIFAC(Do) consortium[J]. Industrial & Engineering Chemistry Research, 2012, 51(36): 11809-11817. |
28 | Hansen H K, Rasmussen P, Fredenslund A, et al. Vapor-liquid equilibria by UNIFAC group contribution(5):Revision and extension[J]. Industrial & Engineering Chemistry Research, 1991, 30(10): 2352-2355. |
29 | Bermejo M D, Fieback T M, Á Martín. Solubility of gases in 1-alkyl-3methylimidazolium alkyl sulfate ionic liquids: experimental determination and modeling[J]. The Journal of Chemical Thermodynamics, 2013, 58: 237-244. |
30 | Jacquemin J, Costa G M F, Husson P, et al. Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K and 343 K and at pressures close to atmospheric[J]. The Journal of Chemical Thermodynamics, 2006, 38(4): 490-502. |
31 | Kumełan J, Á Pérez-Salado K, Tuma D, et al. Solubility of the single gases H2 and CO in the ionic liquid [BMIM][CH3SO4][J]. Fluid Phase Equilibria, 2007, 260(1): 3-8. |
32 | Liu X, Afzal W, Prausnitz J M. Solubilities of small hydrocarbons in [P444][TMPP] and in [EMIM][TF2N][J]. Industrial & Engineering Chemistry Research, 2013, 52(42): 14975-14978. |
33 | Nocon G, Weidlich U, Gmehling J, et al. Prediction of gas solubilities by a modified UNIFAC equation[J]. Berichte der Bunsengesellschaft für Physikalische Chemie, 1983, 87(1): 17-23. |
34 | Lei Z, Dai C, Wei W, et al. UNIFAC model for ionic liquid-CO2 systems[J]. AIChE Journal, 2014, 60(2): 716-729. |
35 | Han J, Lei Z, Dong Y, et al. Process intensification on the separation of benzene and thiophene by extractive distillation[J]. AIChE Journal, 2015, 61(12): 4470-4480. |
36 | Dai C, Dong Y, Han J, et al. Separation of benzene and thiophene with a mixture of NMP and ionic liquid as the entrainer[J]. Fluid Phase Equilibria, 2015, 388(3): 142-150. |
37 | Eckert F, Klamt A. Fast solvent screening via quantum chemistry: COSMO-RS approach[J]. AIChE Journal, 2002, 48(2): 369-385. |
38 | Han J, Dai C, Lei Z, et al. Gas drying with ionic liquids[J]. AIChE Journal, 2018, 64(2): 606-619. |
39 | Khan I, Taha M, Pinho S P, et al. Interactions of pyridinium, pyrrolidinium or piperidinium based ionic liquids with water: measurements and COSMO-RS modelling[J]. Fluid Phase Equilibria, 2016, 414: 93-100. |
40 | Neves C M S S, Batista M L S, Claudio A F M, et al. Thermophysical properties and water saturation of [PF6]- based ionic liquids[J]. Journal of Chemical & Engineering Data, 2010, 55(11): 5065-5073. |
41 | Manan N A, Hardacre C, Jacquemin J, et al. Evaluation of gas solubility prediction in ionic liquids using cosmothermx[J]. Journal of Chemical & Engineering Data, 2009, 54(7): 2005-2022. |
42 | Han J, Dai C, Yu G, et al. Parameterization of COSMO-RS model for ionic liquids[J]. Green Energy & Environment, 2018, 3(3): 75-93. |
43 | Bianca B, Bottini S B, Geert Jan W, et al. Thermodynamic modeling of the phase behavior of binary systems of ionic liquids and carbon dioxide with the group contribution equation of state[J]. Journal of Physical Chemistry B, 2007, 111(51): 14265-14270. |
44 | Pereda S, Raeissi S, Andreatta A E, et al. Modeling gas solubilities in imidazolium based ionic liquids with the [TF2N] anion using the GC-EOS[J]. Fluid Phase Equilibria, 2016, 409: 408-416. |
45 | Kühne E, Martin A, Witkamp G J, et al. Modeling the phase behavior of ternary systems ionic liquid+organic+CO2 with a group contribution equation of state[J]. AIChE Journal, 2009, 55(5): 1265-1273. |
46 | Mota M M T, Kroon M C, Peters C J. Modeling CO2 solubility in an ionic liquid: a comparison between a cubic and a group contribution EOS[J]. The Journal of Supercritical Fluids, 2015, 101: 54-62. |
47 | Dai C, Lei Z, Wang W, et al. Group contribution lattice fluid equation of state for CO2-ionic liquid systems: an experimental and modeling study[J]. AIChE Journal, 2013, 59(11): 4399-4412. |
48 | Kim Y S, Choi W Y, Jang J H, et al. Solubility measurement and prediction of carbon dioxide in ionic liquids[J]. Fluid Phase Equilibria, 2005, 228: 439-445. |
49 | Camper D, Becker C, Koval C, et al. Diffusion and solubility measurements in room temperature ionic liquids[J]. Industrial & Engineering Chemistry Research, 2006, 45(1): 445-450. |
50 | Dai C, Wu L, Yu G, et al. Syngas dehydration with ionic liquids[J]. Industrial & Engineering Chemistry Research, 2017, 56(49): 14642-14650. |
51 | Palgunadi J, Kang J E, Nguyen D Q, et al. Solubility of CO2 in dialkylimidazolium dialkylphosphate ionic liquids[J]. Thermochimica Acta, 2009, 494(1/2): 94-98. |
52 | Sardar S, Wilfred C D, Mumtaz A, et al. Investigation of the thermophysical properties of AMPS-based aprotic ionic liquids for potential application in CO2 sorption processes[J]. Journal of Chemical & Engineering Data, 2017, 62(12): 4160-4168. |
53 | Ji E K, Lim J S, Kang J W. Measurement and correlation of solubility of carbon dioxide in 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids[J]. Fluid Phase Equilibria, 2011, 306(2): 251-255. |
54 | Muldoon M J, Aki S N, Anderson J L, et al. Improving carbon dioxide solubility in ionic liquids[J]. Journal of Physical Chemistry B, 2007, 111(30): 9001-9009. |
55 | He M, Peng S, Liu X, et al. Diffusion coefficients and Henry s constants of hydrofluorocarbons in [HMIM][TF2N], [HMIM][TFO], and [HMIM][BF4][J]. The Journal of Chemical Thermodynamics, 2017, 112: 43-51. |
56 | Hou Y, Baltus R E. Experimental measurement of the solubility and diffusivity of CO2 in room-temperature ionic liquids using a transient thin-liquid-film method[J]. Industrial & Engineering Chemistry Research, 2007, 46(24): 8166-8175. |
57 | Francesco F D, Calisi N, Creatini M, et al. Water sorption by anhydrous ionic liquids[J]. Green Chemistry, 2011, 13(7): 1712-1717. |
58 | Cao Y, Chen Y, Lu L, et al. Water sorption in functionalized ionic liquids: kinetics and intermolecular interactions[J]. Industrial & Engineering Chemistry Research, 2013, 52(5): 2073-2083. |
59 | Cao Y, Chen Y, Sun X, et al. Water sorption in ionic liquids: kinetics, mechanisms and hydrophilicity[J]. Physical Chemistry Chemical Physics, 2012, 14(35): 12252-12262. |
60 | Yu G, Dai C, Gao H, et al. Capturing condensable gases with ionic liquids[J]. Industrial & Engineering Chemistry Research, 2018, 57(36): 12202-12214. |
61 | Wang Y, Li H R, Han S J. A theoretical investigation of the interactions between water molecules and ionic liquids[J]. Journal of Physical Chemistry B, 2006, 110(48): 24646-24651. |
62 | Mcdaniel J G, Verma A. On the miscibility and immiscibility of ionic liquids and water[J]. The Journal of Physical Chemistry B, 2019, 123(25): 5343-5356. |
63 | Seddon K R, Stark A, Torres M J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids[J]. Pure and Applied Chemistry, 2000, 72(12): 2275-2287. |
64 | Domańska U, Królikowska M. Density and viscosity of binary mixtures of thiocyanate ionic liquids + water as a function of temperature[J]. Journal of Solution Chemistry, 2012, 41(8): 1422-1445. |
65 | Tanner E E L, Piston K M, Ma H, et al. The influence of water on choline-based ionic liquids[J]. ACS Biomaterials Science & Engineering, 2019, 5(7): 3645-3653. |
66 | Stéphane S, Ajda P E, Pádua A H, et al. Effect of water on the carbon dioxide absorption by 1-alkyl-3-methylimidazolium acetate ionic liquids[J]. Journal of Physical Chemistry B, 2012, 116(49): 14416-14425. |
67 | Zakrzewska M E, Nunes Da Ponte M. Influence of water on the carbon dioxide solubility in [TFO]- and [EFAP] - based ionic liquids[J]. Journal of Chemical & Engineering Data, 2017, 63(4): 907-912. |
68 | Hasib-Ur-Rahman M, Siaj M, Larachi F. Ionic liquids for CO capture-development and progress[J]. Chemical Engineering Processing: Process Intensification, 2010, 49(4): 313-322. |
69 | Yu G, Sui X, Lei Z, et al. Air-drying with ionic liquids[J]. AIChE Journal, 2019, 65(2): 479-482. |
70 | Ghiasi M M, Bahadori A, Zendehboudi S, et al. Rigorous models to optimise stripping gas rate in natural gas dehydration units[J]. Fuel, 2015, 140: 421-428. |
71 | Yu G, Dai C, Wu L, et al. Natural gas dehydration with ionic liquids[J]. Energy & Fuels, 2017, 31(2): 1429-1439. |
72 | Sarwono A, Man Z, Idris A, et al. Alkyd paint removal: ionic liquid vs volatile organic compound (VOC)[J]. Progress in Organic Coatings, 2018, 122: 79-87. |
73 | Wu L, Geng W, Gao L, et al. Study of gas dehydration process by ionic liquid method in a rotating packed bed[J]. Energy & Fuels, 2017, 31(12): 13400-13405. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[3] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[4] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[5] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[6] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[7] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[8] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[9] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[10] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[11] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[12] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[13] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[14] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[15] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||