CIESC Journal ›› 2020, Vol. 71 ›› Issue (S1): 236-244.DOI: 10.11949/0438-1157.20191210
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Jianpei CHANG(),Xiang HUANG(),Miaomiao AN,Zhaoyang LI
Received:
2019-10-23
Revised:
2019-12-10
Online:
2020-04-25
Published:
2020-04-25
Contact:
Xiang HUANG
通讯作者:
黄翔
作者简介:
常健佩(1992—),男,硕士研究生,基金资助:
CLC Number:
Jianpei CHANG, Xiang HUANG, Miaomiao AN, Zhaoyang LI. Analysis of principle, performance and applicability of indirect evaporative water chiller[J]. CIESC Journal, 2020, 71(S1): 236-244.
常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244.
Add to citation manager EndNote|Ris|BibTeX
项目 | 技术要求 | 备注 |
---|---|---|
冷通道或机柜进风区域的温度 | 18~27℃ | 不得结露 |
冷通道或机柜进风区域的相对湿度和露点温度 | 露点温度宜为5.5~15℃,相对湿度不宜大于60% | |
主机房环境温度和相对湿度(停机时) | 5~45℃,8%~80%,同时露点温度不宜大于27℃ | |
冷冻水供水温度 | 7~21℃ | |
冷冻水回水温度 | 12~27℃ |
Table 1 Data center design specification
项目 | 技术要求 | 备注 |
---|---|---|
冷通道或机柜进风区域的温度 | 18~27℃ | 不得结露 |
冷通道或机柜进风区域的相对湿度和露点温度 | 露点温度宜为5.5~15℃,相对湿度不宜大于60% | |
主机房环境温度和相对湿度(停机时) | 5~45℃,8%~80%,同时露点温度不宜大于27℃ | |
冷冻水供水温度 | 7~21℃ | |
冷冻水回水温度 | 12~27℃ |
环境工况 | 运行模式 | 启动机组 |
---|---|---|
tg≤3℃ | 乙二醇自然冷却 | 机房专用高温冷水空调机组 |
tg>3℃,tG≤16℃ | 水侧蒸发冷却① | 蒸发冷却冷水机组+机房专用高温冷水空调机组 |
tg>3℃,21℃≥tG>16℃ | 蒸发冷却冷水机组+辅助冷源 | 蒸发冷却冷水机组+新风机组/机械制冷冷水机组 |
tG>21℃ | 机械制冷冷源 | 机械制冷-蒸发冷却冷水机组 |
Table 2 Operation mode of air conditioning system using natural cold type evaporative cooling combined mechanical refrigeration in data center
环境工况 | 运行模式 | 启动机组 |
---|---|---|
tg≤3℃ | 乙二醇自然冷却 | 机房专用高温冷水空调机组 |
tg>3℃,tG≤16℃ | 水侧蒸发冷却① | 蒸发冷却冷水机组+机房专用高温冷水空调机组 |
tg>3℃,21℃≥tG>16℃ | 蒸发冷却冷水机组+辅助冷源 | 蒸发冷却冷水机组+新风机组/机械制冷冷水机组 |
tG>21℃ | 机械制冷冷源 | 机械制冷-蒸发冷却冷水机组 |
地点 | 机械制冷空调系统用电/kW | 新型空调系统用电/kW | 节电/kW | 节电率/% |
---|---|---|---|---|
乌鲁木齐 | 4108440 | 1549665 | 2558775 | 62 |
北京 | 4108440 | 1925860 | 2182580 | 53 |
上海 | 4108440 | 2220043 | 1888397 | 46 |
Table3 Energy-saving analysis of 8760 h operation in typical urban data center in China
地点 | 机械制冷空调系统用电/kW | 新型空调系统用电/kW | 节电/kW | 节电率/% |
---|---|---|---|---|
乌鲁木齐 | 4108440 | 1549665 | 2558775 | 62 |
北京 | 4108440 | 1925860 | 2182580 | 53 |
上海 | 4108440 | 2220043 | 1888397 | 46 |
1 | 黄翔. 空调工程[M]. 3版. 北京: 机械工业出版社, 2017: 458. |
Huang X. Air-conditioning Engineering[M]. 3rd ed. Beijing: China Machine Press, 2017: 458. | |
2 | 黄翔. 蒸发冷却空调原理与设备[M]. 北京: 机械工业出版社, 2019: 269. |
Huang X. Evaporative Cooling Air Conditioning Principle and Equipment[M]. Beijing: China Machine Press, 2019: 269. | |
3 | 谢晓云, 江亿, 刘拴强, 等. 间接蒸发冷水机组设计开发及性能分析[J]. 暖通空调, 2007, 37(7): 66-70. |
Xie X Y, Jiang Y, Liu S Q, et al. Design and development of an indirect evaporative water chiller[J]. Heating Ventilating & Air Conditioning, 2007, 37(7): 66-70. | |
4 | 江亿, 谢晓云, 于向阳. 间接蒸发冷却技术——中国西北地区可再生干空气资源的高效应用[J]. 暖通空调, 2009, 39(9): 1-4. |
Jiang Y, Xie X Y, Yu X Y. Indirect evaporative cooling technology: high-performance application of renewable dry air energy in northwest China[J]. Heating Ventilating & Air Conditioning, 2009, 39(9): 1-4. | |
5 | 谢晓云, 江亿. 蒸发冷却制备冷水流程的热学分析[J]. 暖通空调, 2011, 41(3): 65-76. |
Xie X Y, Jiang Y. Thermological analysis of chilled water by evaporative cooling processes[J]. Heating Ventilating & Air Conditioning, 2011, 41(3): 65-76. | |
6 | 孙铁柱, 黄翔, 文力. 蒸发冷却与机械制冷复合高温冷水机组水系统配比问题分析[J]. 流体机械, 2011, 39(5): 81-84. |
Sun T Z, Huang X, Wen L. Discussion of water-system ratio of evaporative cooling and mechanical refrigeration compound high-temperature chiller[J]. Fluid Machinery, 2011, 39(5): 81-84. | |
7 | 孙铁柱, 黄翔, 文力. 一种蒸发冷却与机械制冷复合制取高温冷水的新方法[J]. 制冷, 2010, 29(4): 12-15. |
Sun T Z, Huang X, Wen L.The new method of evaporative cooling and the machinery refrigeration composite system taking the high temperature cold water[J]. Refrigeration, 2010, 29(4): 12-15. | |
8 | 孙铁柱, 黄翔, 文力. 蒸发冷却与机械制冷复合高温冷水机组初探[J]. 化工学报, 2010, 61: 137-141. |
Sun T Z, Huang X, Wen L. Discussion of evaporative cooling and mechanical refrigeration compound high-temperature chiller[J]. CIESC Journal, 2010, 61: 137-141. | |
9 | 孙铁柱. 蒸发冷却与机械制冷复合高温冷水的研究[D]. 西安: 西安工程大学, 2012. |
Sun T Z. Study on evaporative cooling and mechanical refrigeration compound high-temperature chiller[D]. Xi an: Xi an Polytechnic University, 2012. | |
10 | 白延斌. 蒸发冷却与机械制冷复合高温冷水的研究[D]. 西安: 西安工程大学, 2013. |
Bai Y B. Research the key performance parameters of evaporative cooling and mechanical refrigeration composite high temperature water chillers[D]. Xi an: Xi an Polytechnic University, 2013. | |
11 | 黄翔, 白延斌, 郝航, 等. 半集中式蒸发冷却空调系统特性的实验分析[J]. 化工学报, 2012, 63: 63-66. |
Huang X, Bai Y B, Hao H, et al. Test analysis of semi-central evaporative cooling air conditioning system in office building[J]. CIESC Journal, 2012, 63: 63-66. | |
12 | 郝航. 模块化蒸发冷却冷水机组的设计与应用研究[D]. 西安: 西安工程大学, 2014. |
Hao H. Design and apply research of modular evaporative cooling water chiller[D]. Xi an: Xi an Polytechnic University, 2014. | |
13 | 邱佳. 电厂空冷凝汽系统用闭式立管间接蒸发冷却冷水机组研究[D]. 西安: 西安工程大学, 2015. |
Qin J. The research of power plant air condensing steam system with closed type stand pipe indirect evaporative chiller[D]. Xi an: Xi an Polytechnic University, 2015. | |
14 | 王兴兴. 干燥地区蒸发冷却温湿度独立控制系统工程应用研究[D]. 西安: 西安工程大学, 2017. |
Wang X X.The research of evaporative cooling temperature and humidity independent control air conditioning system in dry areas[D]. Xi an: Xi an Polytechnic University, 2017. | |
15 | 杜冬阳. 露点蒸发冷却冷水机组在干燥地区的优化设计及应用研究[D]. 西安: 西安工程大学, 2018. |
Du D Y. Optimization design and application of dew point indirect evaporative water chiller in dry areas[D]. Xi an: Xi an Polytechnic University, 2018. | |
16 | 耿志超. 干燥地区数据中心间接蒸发自然冷却空调系统的应用研究[D]. 西安: 西安工程大学, 2018. |
Geng Z C. Study on the application of indirect evaporation free cooling air conditioning system in dry area data center [D]. Xi an: Xi an Polytechnic University, 2018. | |
17 | Scofield C M, Weaver T S. Using wet-bulb economizers: data center cooling[J]. ASHRAE Journal, 2008, 50(8): 52-58. |
18 | Dunnavant K. Data center heat rejection[J]. ASHRAE Journal, 2011, 53(3): 44-54. |
19 | Niemann J, Bean J, Avelar V. Economizer modes of data center cooling systems[R]. APC White Paper: Schneider Electric. 2011. |
20 | Weerts B A, Gallaher D, Weaver R, et al. Green data center cooling: achieving 90% reduction: airside economization and unique indirect evaporative cooling[C]// Green Technologies Conference. Tulsa: IEEE, 2012: 1- 6. |
21 | Department of Energy U.S.. NSIDC data center: energy reduction strategies airside economization and unique indirect evaporative cooling[R]. Boulder, Nevada: U.S. Department of Energy, 2012. |
22 | Tozer R, Flucker S. Zero refrigeration for data centres in the USA[J]. ASHRAE Transactions, 2012, 118(2): 261-268. |
23 | Cho J, Lim T, Kim B S. Viability of datacenter cooling systems for energy efficiency in temperate or subtropical regions: case study[J]. Energy and Buildings, 2012, 55: 189-197. |
24 | Xuan Y M, Xiao F, Niu X F, et al. Research and application of evaporative cooling in China: a review (Ⅰ)—Research[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 3535-3546. |
25 | Xuan Y M, Xiao F, Niu X F, et al. Research and applications of evaporative cooling in China: a review (Ⅱ)—Systems and equipment[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 3523-3534. |
26 | 王玉刚, 黄翔, 武俊梅. TIEC管内插入螺旋线强化一次空气传热的研究[J]. 纺织高校基础科学学报, 2005, 18(4): 385-388. |
Wang Y G, Huang X, Wu J M. Study on strengthening primary air heat transfer by inserting spiral line in TIEC tube[J]. Basic Sciences Jouanal of Textile Universities, 2005, 18(4): 385-388. | |
27 | 樊丽娟. 管式间接蒸发冷却器亲水性能的实验研究[D]. 西安: 西安工程大学, 2009. |
Fan L J. Experimental research on hydrophilic property of tubular indirect evaporative cooler[D]. Xi an: Xi an Polytechnic University, 2009. | |
28 | Wang F H, Sun T Z, Huang X, et al. Experimental research on a novel porous ceramic tube type indirect evaporative cooler[J]. Applied Thermal Engineering, 2017, 125: 1191-1199. |
29 | 褚俊杰, 黄翔, 孙铁柱, 等. 露点间接蒸发冷却器湿通道侧材料亲水性研究[J]. 棉纺织技术, 2018, (1): 40-44. |
Chu J J, Huang X, Sun T Z, et al. Hydrophilic study of dew point indirect evaporative cooler wet channel side material[J]. Cotton Textile Technology, 2018, (1): 40-44. | |
30 | Duan Z, Zhao X D, Li J. Design, fabrication and performance evaluation of a compact regenerative evaporative cooler: towards low energy cooling for buildings[J]. Energy, 2017, 140: 506-519. |
31 | 中华人民共和国工业和信息化部, 中华人民共和国住房和城乡建设部. 数据中心设计规范: GB50174-2017[S]. 北京: 中国计划出版社, 2017. |
Ministry of Industry and Information Technology, Ministry of Housing and Urban-Rural Development of the People s Republic of China. Data Center Design Specification: GB50174-2017[S]. Beijing: China Planning Press, 2017. |
[1] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[2] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[3] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[4] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[5] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[6] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[7] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[8] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[9] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[10] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[11] | Huafu ZHANG, Lige TONG, Zhentao ZHANG, Junling YANG, Li WANG, Junhao ZHANG. Recent progress and development trend of mechanical vapor compression evaporation technology [J]. CIESC Journal, 2023, 74(S1): 8-24. |
[12] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[13] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[14] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[15] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||