CIESC Journal ›› 2020, Vol. 71 ›› Issue (1): 388-396.DOI: 10.11949/0438-1157.20191317
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Yingying LI1,2(),Qianqian DENG1,2,Hao LIU1,2,Qichun LIU1,2,Zhenggui GU2,Fang WANG1(
)
Received:
2019-11-04
Revised:
2019-11-18
Online:
2020-01-05
Published:
2020-01-05
Contact:
Fang WANG
李莹莹1,2(),邓谦谦1,2,刘浩1,2,刘其春1,2,顾正桂2,王昉1(
)
通讯作者:
王昉
作者简介:
李莹莹(1994—),女,硕士研究生,基金资助:
CLC Number:
Yingying LI, Qianqian DENG, Hao LIU, Qichun LIU, Zhenggui GU, Fang WANG. Microstructure characterization and thermal stability of new silk fibroin composite films[J]. CIESC Journal, 2020, 71(1): 388-396.
李莹莹, 邓谦谦, 刘浩, 刘其春, 顾正桂, 王昉. 新型丝素复合膜的微结构表征及热稳定性[J]. 化工学报, 2020, 71(1): 388-396.
Fig.1 SEM of MSF/PLA composite film prepared with different mass ratios(The upper layer a—e are silk fibroin/polylactic acid mixed solution, MSF/PLA-0∶5, MSF/PLA-1∶5, MSF/PLA-5∶5, MSF/PLA-5∶1 and MSF/PLA-5∶0, respectively; The lower layer a'—e' are SEM images corresponding to the ratio of the silk fibroin and polylactic acid composite films, respectively)
Sample | β-sheet/% | α-helix & random coils /% | Turns/% | Side chains/% |
---|---|---|---|---|
MSF/PLA-1∶5 | 12.23 | 73.89 | 12.56 | 1.32 |
MSF/PLA-5∶5 | 15.54 | 71.03 | 10.79 | 2.64 |
MSF/PLA-5∶1 | 18.24 | 68.99 | 9.56 | 3.21 |
MSF/PLA-5∶0 | 23.29 | 66.80 | 8.55 | 1.36 |
Table 1 Contents of silk fibroin protein in composite materials
Sample | β-sheet/% | α-helix & random coils /% | Turns/% | Side chains/% |
---|---|---|---|---|
MSF/PLA-1∶5 | 12.23 | 73.89 | 12.56 | 1.32 |
MSF/PLA-5∶5 | 15.54 | 71.03 | 10.79 | 2.64 |
MSF/PLA-5∶1 | 18.24 | 68.99 | 9.56 | 3.21 |
MSF/PLA-5∶0 | 23.29 | 66.80 | 8.55 | 1.36 |
Item | MSF/PLA-0∶5 | MSF/PLA-1∶5 | MSF/PLA-5∶5 | MSF/PLA-5∶1 | MSF/PLA-5∶0 |
---|---|---|---|---|---|
Tg/℃ | 55.81 | 58.68 | 65.02 | 74.33 | 154.32 |
Tm /℃ | 150.29 | 150.01 | 147.11 | 144.98 | — |
ΔHm/(J·g-1) | 30.23 | 25.37 | 18.68 | 14.57 | — |
ΔCp/(J·g-1·℃-1) | 0.39 | 0.40 | 0.43 | 0.46 | — |
XC-DSC | 0.33 | 0.27 | 0.19 | 0.11 | — |
XMAP-DSC | 0.63 | 0.66 | 0.70 | 0.75 | — |
XRAP-DSC | 0.04 | 0.07 | 0.11 | 0.14 | — |
XC-XRD | 0.35 | 0.30 | 0.21 | 0.12 | — |
XMAP-XRD | 0.59 | 0.63 | 0.69 | 0.74 | — |
XRAP-XRD | 0.06 | 0.07 | 0.10 | 0.14 | — |
Tonset /℃ | 346.27 | 330.19 | 305.38 | 283.37 | 272.76 |
Tp/℃ | 350.69 | 336.95 | 316.06 | 289.62 | 280.27 |
ΔYw /% | 0.42 | 1.73 | 4.80 | 6.07 | 6.99 |
Table 2 Thermodynamic parameters, phase component content and TG data of composite film
Item | MSF/PLA-0∶5 | MSF/PLA-1∶5 | MSF/PLA-5∶5 | MSF/PLA-5∶1 | MSF/PLA-5∶0 |
---|---|---|---|---|---|
Tg/℃ | 55.81 | 58.68 | 65.02 | 74.33 | 154.32 |
Tm /℃ | 150.29 | 150.01 | 147.11 | 144.98 | — |
ΔHm/(J·g-1) | 30.23 | 25.37 | 18.68 | 14.57 | — |
ΔCp/(J·g-1·℃-1) | 0.39 | 0.40 | 0.43 | 0.46 | — |
XC-DSC | 0.33 | 0.27 | 0.19 | 0.11 | — |
XMAP-DSC | 0.63 | 0.66 | 0.70 | 0.75 | — |
XRAP-DSC | 0.04 | 0.07 | 0.11 | 0.14 | — |
XC-XRD | 0.35 | 0.30 | 0.21 | 0.12 | — |
XMAP-XRD | 0.59 | 0.63 | 0.69 | 0.74 | — |
XRAP-XRD | 0.06 | 0.07 | 0.10 | 0.14 | — |
Tonset /℃ | 346.27 | 330.19 | 305.38 | 283.37 | 272.76 |
Tp/℃ | 350.69 | 336.95 | 316.06 | 289.62 | 280.27 |
ΔYw /% | 0.42 | 1.73 | 4.80 | 6.07 | 6.99 |
1 | Yu S, Yang W, Chen S, et al. Floxuridine-loaded silk fibroin nanospheres[J]. RSC Advances, 2014, 4(35): 18171. |
2 | Mitropoulos A N, Marelli B, Ghezzi C E, et al. Transparent, nanostructured silk fibroin hydrogels with tunable mechanical properties[J]. ACS Biomater. Sci. Eng., 2015, 1(10): 964-970. |
3 | Koh L D, Cheng Y, Teng C P, et al. Structures, mechanical properties and applications of silk fibroin materials[J]. Prog. Polym. Sci., 2015, 46: 86-110. |
4 | 李莹莹, 王昉, 刘其春, 等. 丝素蛋白及其复合材料的研究进展[J]. 材料工程, 2018, 46 (8): 18-30. |
Li Y Y, Wang F, Liu Q C, et al. Research progress of silk fibroin and its composites[J] . Materials Engineering, 2018, 46 (8): 18-30. | |
5 | Pritchard E M, Dennis P B, Omenetto F, et al. Physical and chemical aspects of stabilization of compounds in silk [J]. Biopolymers, 2012, 97(6): 479-498. |
6 | Zhu H L, Feng X X, Zhang H P, et al. Structural characteristics and properties of silk fibroin/poly (lactic acid) blend films[J]. Biomater. Sci. Polym. Ed., 2009, 20 (9): 1259-1274. |
7 | 王利君, 熊杰, 骆菁菁, 等. 聚乳酸-聚己内酯/丝素蛋白三元复合纳米纤维膜支架的结构与性能[J]. 纺织学报, 2017, 38(5): 8-13. |
Wang L J, Xiong J, Luo J J, et al. Structure and properties of polylactic acid-polycaprolactone/ silk fibroin composite nanofibrous scaffolds [J]. J. Text. Res., 2017, 38(5): 8-13. | |
8 | 肖红伟, 熊杰, 李妮, 等. 聚乳酸-乙醇酸共聚物/丝素共混纳米纤维多孔膜的制备及性能[J]. 高分子材料科学与工程, 2011, 27(12): 142-145. |
Xiao H W, Xiong J, Li N, et al. Preparation and properties of poly(lactide-co-glycolide)/silk blend nanofibrous porous membrane[J]. Polymer Materials Science & Engineering, 2011, 27(12): 142-145. | |
9 | Zhang C, Zhang Y P, Shao H L, et al. Hybrid silk fibers dry-spun from regenerated silk fibroin/ graphene oxide aqueous solutions[J]. ACS Appl. Mater. Interfaces, 2016, 8: 3349-3358. |
10 | Suzuki S, Dawson R A, Chirila T V, et al. Treatment of silk fibroin with poly(ethylene glycol) for the enhancement of corneal epithelial cell growth[J]. Journal of Functional Biomaterials, 2015, 6(2): 345-366. |
11 | Martin O, Averous L. Poly(lactic acid): plastication and properties of biodegradable multiphase systems[J]. Polymer, 2001, 42(14): 6209-6219. |
12 | Xiao H, Yang L, Ren X, et al. Kinetics and crystal structure of poly(lactic acid) crystallized nonisothermally: effect of plasticizer and nucleating agent[J]. Polymer Composites, 2010, 31(12): 2057-2068. |
13 | Shao J, Guo Y, Xiang S, et al. The morphology and spherulite growth of PLA stereocomplex in linear and branched PLLA/PDLA blends: effects of molecular weight and structure[J]. Crystengcomm, 2015, 18(2): 274-282. |
14 | 倪莉, 王璋, 姚文华, 等. 丝素蛋白结构的研究(1): 探讨氯化钙溶液溶解丝素的机理[J]. 中国食品学报, 2001, 1(1): 12-18. |
Ni L, Wang Z, Yao W H, et al. Study on the structure of silk fibroin protein(1): The mechanism of dissolving fibroin in calcium chloride solution [J]. Journal of Chinese Food, 2001, 1(1): 12-18. | |
15 | Lai S M, Hsieh Y T. Preparation and properties of polylactic acid (PLA)/silica nanocomposites[J]. J. Macromol. Sci. B, 2016, 55(3): 211-228. |
16 | Zhou S B, Zheng X T, Yu X J, et al. Hydrogen bonding interaction of poly(D, L-lactide)/hydroxyapatite nanocomposites[J]. Chem. Mater., 2007, 19: 247-253. |
17 | Zhong J, Ma M, Li W, et al. Self-assembly of regenerated silk fibroin from random coil nanostructures to antiparallel β-sheet nanostructures[J]. Biopolymers, 2015, 101(12): 1181-1192. |
18 | 于海洋, 王昉, 刘其春, 等.新型丝素蛋白膜的结构和热分解动力学机理[J].物理化学学报, 2017, 33(2): 344-355. |
Yu H Y, Wang F, Liu Q C, et al. Structure and kinetics of thermal decomposition mechanism of novel silk fibroin films[J].Acta Physico-Chimica Sinica, 2017, 33(2): 344-355. | |
19 | Hu X, Kaplan D, Cebe P. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy[J]. Macromolecules, 2006, 39: 6161-6170. |
20 | Wang F, Wu H, Venkataraman V, et al. Silk fibroin-poly(lactic acid) biocomposites: effect of protein-synthetic polymer interactions and miscibility on material properties and biological responses [J]. Materials Science & Engineering C, 2019, 104: 109890. |
21 | Wool R P, Bretzlaff R S, Li B Y, et al. Infrared and Raman spectroscopy of stressed polyethylene[J]. Journal of Polymer Science, Part B (Polymer Physics), 1986, 24(5): 1039-1066. |
22 | Xu Y, Liang L. Surface-enhanced resonance Raman scattering of phycoerythrin adsorbed by silver hydrosols[J]. Applied Spectroscopy, 1994, 48(9): 1147-1149. |
23 | Carey P R. Biochemical Applications of Raman and Resonance Raman Spectroscopies[M]. New York: Academic Press, 1982: 71-96. |
24 | Bandekar J, Krimm S. Vibrational analysis of peptides, polypeptides, and proteins: characteristic amide bands of β-turns[J]. Proc. Natl. Acad. Sci. USA, 1979, 76(2): 774-777. |
25 | Kister G, Cassanas G, Vert M, et al. Vibrational analysis of poly(L-lactic acid)[J]. Journal of Raman Spectroscopy, 2010, 26(4): 307-311. |
26 | Furukawa T, Sato H, Murakami R, et al. Raman microspectroscopy study of structure, dispersibility, and crystallinity of poly(hydroxybutyrate)/poly(L-lactic acid) blends[J]. Polymer, 2006, 47(9): 3132-3140. |
27 | Huang S M, Hwang J J, Liu H J, et al. Crystallization behavior of poly(L-lactic acid)/montmorillonite nanocomposites[J]. J. Appl. Polym. Sci., 2010, 117(1): 434-442. |
28 |
Bruckmoser K, Resch K. Effect of processing conditions on crystallization behavior and mechanical properties of poly(lactic acid) staple fibers[J]. J. Appl. Polym. Sci., 2015, 132(33). doi: 10.1002/app.42432.
DOI |
29 | Pluta M. Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization[J]. Polymer, 2004, 45(24): 8239-8251. |
30 | Wu T M, Wu C Y. Biodegradable poly (lactic acid)/chitosan-modified montmorillonite nanocomposites: preparation and characterization[J]. Polymer Degradation & Stability, 2006, 91(9): 2198-2204. |
31 | Zhang J, Yan D X, Xu J Z, et al. Highly crystallized poly (lactic acid) under high pressure[J]. AIP Advances, 2012, 2(4): 042159. |
32 | Pal A, Katiyar V. Melt processing of biodegradable poly (lactic acid)/ functionalized chitosan nanocomposite films: mechanical modeling with improved oxygen barrier and thermal properties[J]. J. Polym. Res., 2017, 24 (10): 173. |
33 | Iannace S, Maffezzoli A, Leo G, et al. Influence of crystal and amorphous phase morphology on hydrolytic degradation of PLLA subjected to different processing conditions[J]. Polymer, 2001, (42): 3799-3807. |
34 | Wang F, Wolf N, Rocks E M, et al. Comparative studies of regenerated water-based Mori, Thai, Eri, Muga and Tussah silk fibroin films[J]. J. Therm. Anal. Calorim., 2015, 122(3): 1069-1076. |
35 | Gaur U. Advanced thermal analysis system (ATHAS) polymer heat capacity data bank[C]//ACS Symposium. 1982: 355-366. |
36 | Sheng S J, Hu X, Wang F, et al. Mechanical and thermal property characterization of poly-L-lactide(PLLA) scaffold developed using pressure-controllable green foaming technology[J]. Materials Science and Engineering: C, 2015, 49: 612-622. |
37 | 刘其春, 王昉, 李莹莹, 等. 比较两种丝素膜的结构、热分解机理与热力学参数[J]. 中国科学: 化学, 2019, (7): 1014-1029. |
Liu Q C, Wang F, Li Y Y, et al. Comparative studies of structure, thermal decomposition mechanism and thermodynamic parameters of two kinds of silk fibroin films [J]. Chinese Science: Chemistry, 2019, (7): 1014-1029. |
[1] | Wei SU, Dongxu MA, Xu JIN, Zhongyan LIU, Xiaosong ZHANG. Visual experimental study on effect of surface wettability on frost propagation characteristics [J]. CIESC Journal, 2023, 74(S1): 122-131. |
[2] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[3] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[4] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[5] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[6] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[7] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[8] | Yuntong GE, Wei WANG, Kai LI, Fan XIAO, Zhipeng YU, Jing GONG. AFM study of the interaction forces between micro-oil droplets and modified silica surfaces in multiphase dispersion systems [J]. CIESC Journal, 2023, 74(4): 1651-1659. |
[9] | Yuming CHEN, Wei LI, Xiang YAN, Jingdai WANG, Yongrong YANG. Research progress on regulation of aggregation structure for nascent polyethylene [J]. CIESC Journal, 2023, 74(2): 487-499. |
[10] | Xuan ZHOU, Mengya LI, Jie SUN, Zhenkai CEN, Qiangsan LYU, Lishan ZHOU, Haitao WANG, Dandan HAN, Junbo GONG. The regulation mechanism of additives on the amino acid crystal growth [J]. CIESC Journal, 2023, 74(2): 500-510. |
[11] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
[12] |
Guoxin SUN, Mengxuan GOU, Cheng ZHOU, Pei CHANG, Gaohong HE, Xiaobin JIANG.
Membrane distillation crystallization coupling process for the treatment of high concentration Na+//NO |
[13] | Xueying NAI, Peng WU, Yuan CHENG, Jianfei XIAO, Xin LIU, Yaping DONG. Study on hydrothermal crystallization kinetics of magnesium oxysulfate nanowires [J]. CIESC Journal, 2022, 73(7): 3038-3044. |
[14] | Haiqing YIN, Yiming MA, Xuxing WAN, Weibing DONG, Yulong ZHANG, Songgu WU. Research of lithium carbonate three-phase reactive crystallization process [J]. CIESC Journal, 2022, 73(3): 1207-1220. |
[15] | Xuemei CHEN, Tong WANG, Yubo GAO, Dingcheng PENG, Yuting LUO. Efficient solar interfacial evaporation using laser-induced graphene [J]. CIESC Journal, 2022, 73(12): 5648-5659. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||