CIESC Journal ›› 2020, Vol. 71 ›› Issue (1): 397-408.DOI: 10.11949/0438-1157.20191249

• Material science and engineering, nanotechnology • Previous Articles     Next Articles

g-C3N4-CdS-NiS2 composite nanotube: synthesis and its photocatalytic activity for H2 generation under visible light

Kelong CHEN(),Jianhua HUANG()   

  1. Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
  • Received:2019-10-23 Revised:2019-11-15 Online:2020-01-05 Published:2020-01-05
  • Contact: Jianhua HUANG

g-C3N4-CdS-NiS2复合纳米管的制备及可见光催化分解水制氢

陈克龙(),黄建花()   

  1. 浙江理工大学化学系,浙江 杭州 310018
  • 通讯作者: 黄建花
  • 作者简介:陈克龙(1993—),男,硕士研究生,2435989021@qq.com
  • 基金资助:
    国家自然科学基金项目(21574117)

Abstract:

Rapid recombination of photogenerated electron-hole pairs is one of important factors leading to poor performance of semiconductor photocatalysts. Constructing a heterojunction is an effective method for separation of photogenerated electron-hole pairs. In the present work, g-C3N4-CdS-NiS2 composite nanotube was synthesized via thermal condensation using urea and thiourea as precursors, and subsequent two-step hydrothermal reactions. The photocatalytic activity of g-C3N4-CdS-NiS2 composite was investigated for H2 generation from water using triethanolamine as sacrificial agent under visible light irradiation. The optimal g-C3N4-CdS-NiS2 composite with the content of CdS 10%(mass) produced H2 at a rate of 50.9 μmol·h-1, which is 25 times and 11 times of that of pure g-C3N4 nanotube and g-C3N4-CdS (NiS2) binary composite, respectively. Moreover, cyclic photocatalytic experiments demonstrated the high stability of g-C3N4-CdS-NiS2 composite. The improvement in the photocatalytic performance for H2 production can be mainly attributed to the formation of heterojunction between CdS, NiS2 and g-C3N4 nanotubes, which is beneficial to the separation of photogenerated electron-hole pairs.

Key words: hydrogen production, catalysis, photochemistry, heterojunction, cadmium sulfide, nickel sulfide, nanotube, visible light catalysis, g-C3N4

摘要:

光生电子-空穴对的快速复合是导致半导体光催化剂性能不佳的重要因素之一,构建异质结是分离光生电子-空穴对的有效方法。结合热缩合和两步水热反应构建了g-C3N4-CdS-NiS2复合纳米管,并进一步研究了在可见光照射下不同CdS含量的g-C3N4-CdS-NiS2分解水制氢的光催化性能。结果表明,当CdS含量为10%(质量)时,三元复合物的产氢速率最高(50.9 μmol·h-1),是纯g-C3N4纳米管的25倍,是g-C3N4-CdS和g-C3N4-NiS2二元复合物的11倍。而且,经过五次循环光催化反应后,产氢速率保持不变。光催化制氢性能的提高主要源于g-C3N4、CdS与NiS2形成的异质结促进光生电子和空穴的迁移及电子-空穴对的分离。

关键词: 制氢, 催化, 光化学, 异质结, 硫化镉, 硫化镍, 纳米管, 可见光催化, g-C3N4

CLC Number: