CIESC Journal ›› 2020, Vol. 71 ›› Issue (6): 2457-2465.DOI: 10.11949/0438-1157.20191530
• Reviews and monographs • Previous Articles Next Articles
Le YANG1(),Jinhe YU1,Rong FU1,Yuanyang XIE1,Chang YU1(),Jieshan QIU2()
Received:
2019-12-17
Revised:
2020-01-17
Online:
2020-06-05
Published:
2020-06-05
Contact:
Chang YU,Jieshan QIU
杨乐1(),余金河1,付蓉1,谢远洋1,于畅1(),邱介山2()
通讯作者:
于畅,邱介山
作者简介:
杨乐(1995—),男,硕士研究生,基金资助:
CLC Number:
Le YANG, Jinhe YU, Rong FU, Yuanyang XIE, Chang YU, Jieshan QIU. Research progress of solvent-in-salt electrolyte for supercapacitor[J]. CIESC Journal, 2020, 71(6): 2457-2465.
杨乐, 余金河, 付蓉, 谢远洋, 于畅, 邱介山. 超级电容器用solvent-in-salt型电解液的研究进展[J]. 化工学报, 2020, 71(6): 2457-2465.
1 | Yang J, Yu C, Fan X. et al. Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors[J]. Energy & Environmental Science, 2016, 9(4): 1299-1307. |
2 | Lin T, Chen I W, Liu F, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science, 2015, 350(6267): 1508-1513. |
3 | Guo W, Yu C, Li S F, et al. A phase transformation-resistant electrode enabled by a MnO2-confined effect for enhanced energy storage[J]. Advanced Functional Materials, 2019, 29(27): 1901342. |
4 | Li S F, Yu C, Yang Y, et al. Phosphate species up to 70% mass ratio for enhanced pseudocapacitive properties[J]. Small, 2018, 14(50): 1803811. |
5 | Li J, Xiong D, Wang L, et al. High-performance self-assembly MnCo2O4 nanosheets for asymmetric supercapacitors[J]. Journal of Energy Chemistry, 2019, 37: 66-72. |
6 | Zhu C, He Y, Liu Y, et al. ZnO@MOF@pani core-shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes[J]. Journal of Energy Chemistry, 2019, 35: 124-131. |
7 | Sun Z H, Yuan A B. Electrochemical performance of nickel hydroxide/activated carbon supercapacitors using a modified polyvinyl alcohol based alkaline polymer electrolyte[J]. Chinese Journal of Chemical Engineering, 2009, 17(1): 150-155. |
8 | Smolin Y Y, Lau K K S, Soroush M. First-principles modeling for optimal design, operation, and integration of energy conversion and storage systems[J]. AIChE Journal, 2018, 65(7): 16482. |
9 | Guo W, Yu C, Li S F, et al. A universal converse voltage process for triggering transition metal hybrids in situ phase restruction toward ultrahigh-rate supercapacitors[J]. Advanced Materials, 2019, 31: 1901241. |
10 | Li S F, Yu C, Yang J, et al. A superhydrophilic “nanoglue” for stabilizing metal hydroxides onto carbon materials for high-energy and ultralong-life asymmetric supercapacitors[J]. Energy & Environmental Science, 2017, 10(9): 1958-1965. |
11 | Li P, Zhang D, Xu Y, et al. Nitrogen-doped hierarchical porous carbon from polyaniline/silica self-aggregates for supercapacitor[J]. Chinese Journal of Chemical Engineering, 2019, 27(3): 709-716. |
12 | Burke A, Miller M. The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications[J]. Journal of Power Sources, 2011, 196(1): 514-522. |
13 | Korenblit Y, Kajdos A, West W C, et al. In situ studies of ion transport in microporous supercapacitor electrodes at ultralow temperatures[J]. Advanced Functional Materials, 2012, 22(8): 1655-1662. |
14 | Kurzweil P, Chwistek M. Electrochemical stability of organic electrolytes in supercapacitors: spectroscopy and gas analysis of decomposition products[J]. Journal of Power Sources, 2008, 176(2): 555-567. |
15 | Lewandowski A, Olejniczak A, Galinski M, et al. Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes[J]. Journal of Power Sources, 2010, 195(17): 5814-5819. |
16 | Lai Y, Chen X, Zhang Z, et al. Tetraethylammonium difluoro(oxalato)borate as electrolyte salt for electrochemical double-layer capacitors[J]. Electrochimica Acta, 2011, 56(18): 6426-6430. |
17 | Ishimoto S, Asakawa Y, Shinya M, et al. Degradation responses of activated-carbon-based EDLs for higher voltage operation and their factors[J]. Journal of the Electrochemical Society, 2009, 156(7): A563-A571. |
18 | Jung N, Kwon S, Lee D, et al. Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors[J]. Advanced Materials, 2013, 25(47): 6854-6858. |
19 | Yu X, Ruan D, Wu C,et al. Spiro-(1, 1')-bipyrrolidinium tetrafluoroborate salt as high voltage electrolyte for electric double layer capacitors[J]. Journal of Power Sources, 2014, 265: 309-316. |
20 | Armand M, Endres F, MacFarlane D R, et al. Ionic-liquid materials for the electrochemical challenges of the future[J]. Nature Materials, 2009, 8(8): 621-629. |
21 | Lewandowski A, Galinski M. Practical and theoretical limits for electrochemical double-layer capacitors[J]. Journal of Power Sources, 2007, 173(2): 822-828. |
22 | Lewandowski A, Galiński M. Carbon-ionic liquid double-layer capacitors[J]. Journal of Physics and Chemistry of Solids, 2004, 65(2/3): 281-286. |
23 | Lewandowski A, Świderska A. Electrochemical capacitors with polymer electrolytes based on ionic liquids[J]. Solid State Ionics, 2003, 161(3/4): 243-249. |
24 | Coadou E, Goodrich P, Neale A R, et al. Synthesis and thermophysical properties of ether-functionalized sulfonium ionic liquids as potential electrolytes for electrochemical applications[J]. ChemPhysChem, 2016, 17(23): 3992-4002. |
25 | Lu X, Yu M, Wang G, et al. Flexible solid-state supercapacitors: design, fabrication and applications[J]. Energy & Environmental Science, 2014, 7(7): 2160-2181. |
26 | Li S F, Yu C, Yang J, et al. Ultrathin nitrogen-enriched hybrid carbon nanosheets for supercapacitors with ultrahigh rate performance and high energy density[J]. ChemElectrochem, 2017, 4(2): 369-375. |
27 | Yu J H, Yu C, Guo W, et al. Decoupling and correlating the ion transport by engineering 2D carbon nanosheets for enhanced charge storage[J]. Nano Energy, 2019, 64: 103921. |
28 | Zeng Z, Murugesan V, Han K S, et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries[J]. Nature Energy, 2018, 3(8): 674-681. |
29 | Azov V A, Egorova K S, Seitkalieva M M, et al. “Solvent-in-salt” systems for design of new materials in chemistry, biology and energy research[J]. Chemical Society Reviews, 2018, 47(4): 1250-1284. |
30 | Wang J, Yamada Y, Sodeyama K, et al. Superconcentrated electrolytes for a high-voltage lithium-ion battery[J]. Nature Communications, 2016, 7: 12032. |
31 | Bu X, Su L, Dou Q, et al. A low-cost “water-in-salt” electrolyte for a 2.3 V high-rate carbon-based supercapacitor[J]. Journal of Materials Chemistry A, 2019, 7(13): 7541-7547. |
32 | Krummacher J, Hess L H, Balducci A. Al(TFSI)3 in acetonitrile as electrolytes for electrochemical double layer capacitors[J]. Journal of the Electrochemical Society, 2019, 166(10): A1763-A1768. |
33 | Liu Q, Zhou J, Song C, et al. 2.2 V high performance symmetrical fiber-shaped aqueous supercapacitors enabled by “water-in-salt” gel electrolyte and N-doped graphene fiber[J]. Energy Storage Materials, 2020, 24: 495-503. |
34 | Suo L, Hu Y S, Li H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nature Communications, 2013, 4: 1481. |
35 | Yang C, Chen J, Qing T, et al. 4.0 V aqueous Li-ion batteries[J]. Joule, 2017, 1(1): 122-132. |
36 | Suo L, Borodin O, Sun W, et al. Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte[J]. Angewandte Chemie International Edition, 2016, 55(25): 7136-7141. |
37 | Suo L, Borodin O, Gao T, et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938-943. |
38 | Tian Z, Deng W, Wang X, et al. Superconcentrated aqueous electrolyte to enhance energy density for advanced supercapacitors[J]. Functional Materials Letters, 2017, 10(6): 1750081. |
39 | Dou Q, Lei S, Wang D W, et al. Safe and high-rate supercapacitors based on an “acetonitrile/water in salt” hybrid electrolyte[J]. Energy & Environmental Science, 2018, 11(11): 3212-3219. |
40 | Vatamanu J, Borodin O. Ramifications of water-in-salt interfacial structure at charged electrodes for electrolyte electrochemical stability[J]. The Journal of Physical Chemistry Letters, 2017, 8(18): 4362-4367. |
41 | Borodin O, Suo L, Gobet M, et al. Liquid structure with nano-heterogeneity promotes cationic transport in concentrated electrolytes[J]. ACS Nano, 2017, 11(10): 10462-10471. |
42 | Hasegawa G, Kanamori K, Kiyomura T, et al. Hierarchically porous carbon monoliths comprising ordered mesoporous nanorod assemblies for high-voltage aqueous supercapacitors[J]. Chemistry of Materials, 2016, 28(11): 3944-3950. |
43 | Yin J, Zheng C, Qi L, et al. Concentrated NaClO4 aqueous solutions as promising electrolytes for electric double-layer capacitors[J]. Journal of Power Sources, 2011, 196(8): 4080-4087. |
44 | Fan X, Chen L, Borodin O, et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries[J]. Nature Nanotechnology, 2018, 13(8): 715-722. |
45 | Zheng J, Lochala J A, Kwok A, et al. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications[J]. Advanced Science, 2017, 4(8): 1700032. |
46 | Gambou-Bosca A, Bélanger D. Electrochemical characterization of MnO2-based composite in the presence of salt-in-water and water-in-salt electrolytes as electrode for electrochemical capacitors[J]. Journal of Power Sources, 2016, 326: 595-603. |
47 | Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin?[J]. Science, 2014, 343(6176): 1210-1211. |
48 | Xiao D, Wu Q, Liu X, et al. Aqueous symmetric supercapacitors with carbon nanorod electrodes and water-in-salt electrolyte[J]. ChemElectrochem, 2019, 6(2): 439-443. |
49 | Lannelongue P, Bouchal R, Mourad E, et al. “Water-in-salt” for supercapacitors: a compromise between voltage, power density, energy density and stability[J]. Journal of the Electrochemical Society, 2018, 165(3): A657-A663. |
50 | Zhang M, Makino S, Mochizuki D, et al. High-performance hybrid supercapacitors enabled by protected lithium negative electrode and “water-in-salt” electrolyte[J]. Journal of Power Sources, 2018, 396: 498-505. |
51 | Tomiyasu H, Shikata H, Takao K, et al. An aqueous electrolyte of the widest potential window and its superior capability for capacitors[J]. Scientific Reports, 2017, 7: 45048. |
52 | Fic K, Lota G, Meller M, et al. Novel insight into neutral medium as electrolyte for high-voltage supercapacitors[J]. Energy & Environmental Science, 2012, 5(2): 5842-5850. |
53 | Suo L, Oh D, Lin Y, et al. How solid-electrolyte interphase forms in aqueous electrolytes[J]. Journal of the American Chemical Society, 2017, 139(51): 18670-18680. |
54 | Smith L, Dunn B. Opening the window for aqueous electrolytes[J]. Science, 2015, 350(6263): 918-918. |
55 | Kuhnel R S, Reber D, Remhof A, et al. “Water-in-salt” electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries[J]. Chemical Communications, 2016, 52(68): 10435-10438. |
56 | Coustan L, Zaghib K, Bélanger D. New insight in the electrochemical behaviour of stainless steel electrode in water-in-salt electrolyte[J]. Journal of Power Sources, 2018, 399: 299-303. |
57 | Suo L, Han F, Fan X, et al. “Water-in-salt” electrolytes enable green and safe Li-ion batteries for large scale electric energy storage applications[J]. Journal of Materials Chemistry A, 2016, 4(17): 6639-6644. |
58 | Fan X, Chen L, Ji X, et al. Highly fluorinated interphases enable high-voltage Li-metal batteries[J]. Chemistry, 2018, 4(1): 174-185. |
59 | Suo L, Borodin O, Wang Y, et al. “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting[J]. Advanced Energy Materials, 2017, 7(21): 1701189. |
60 | Dou Q, Lu Y, Su L, et al. A sodium perchlorate-based hybrid electrolyte with high salt-to-water molar ratio for safe 2.5 V carbon-based supercapacitor[J]. Energy Storage Materials, 2019, 63: 603-609. |
61 | Yamada Y, Furukawa K, Sodeyama K, et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136(13): 5039-5046. |
62 | Chen S, Zheng J, Mei D, et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Advanced Materials, 2018, 30(21): 1706102. |
63 | Lee J, Lee Y, Lee J, et al. Ultraconcentrated sodium bis(fluorosulfonyl)imide-based electrolytes for high-performance sodium metal batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(4): 3723-3732. |
64 | Messaggi F, Ruggeri I, Genovese D, et al. Oxygen redox reaction in lithium-based electrolytes: from salt-in-solvent to solvent-in-salt[J]. Electrochimica Acta, 2017, 245: 296-302. |
65 | Taggougui M, Diaw M, Carré B, et al. Solvents in salt electrolyte: benefits and possible use as electrolyte for lithium-ion battery[J]. Electrochimica Acta, 2008, 53(17): 5496-5502. |
66 | Ding M S, Von C A, Xu K. Conductivity, viscosity, and their correlation of a super-concentrated aqueous electrolyte[J]. The Journal of Physical Chemistry C, 2017, 121(4): 2149-2153. |
67 | Yang C, Suo L, Borodin O, et al. Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(24): 6197-6202. |
68 | Yamada Y, Usui K, Sodeyama K, et al. Hydrate-melt electrolytes for high-energy-density aqueous batteries[J]. Nature Energy, 2016, 1(10): 16129. |
69 | Hu P, Yan M, Zhu T, et al. Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life[J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42717-42722. |
70 | Reber D, Kühnel R S, Battaglia C. High-voltage aqueous supercapacitors based on NaTFSI [J]. Sustainable Energy & Fuels, 2017, 1(10): 2155-2161. |
[1] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[2] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[3] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[4] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
[5] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[6] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[7] | Wenchao XU, Zhigao SUN, Cuimin LI, Juan LI, Haifeng HUANG. Effect of surfactant E-1310 on the formation of HCFC-141b hydrate under static conditions [J]. CIESC Journal, 2023, 74(5): 2179-2185. |
[8] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[9] | Xiangshang CHEN, Zhenjie MA, Xihua REN, Yue JIA, Xiaolong LYU, Huayan CHEN. Preparation and mass transfer efficiency of three-dimensional network extraction membrane [J]. CIESC Journal, 2023, 74(3): 1126-1133. |
[10] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
[11] | Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369. |
[12] | Jianxin CHEN, Ruijie ZHU, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of cellulose-derived biomass porous carbon and its supercapacitor performance [J]. CIESC Journal, 2022, 73(9): 4194-4206. |
[13] | Hongxin YANG, Xingya LI, Liang GE, Tongwen XU. Preparation of mono-/divalent anion permselective membranes with piperidinium-type long side-chain [J]. CIESC Journal, 2022, 73(8): 3739-3748. |
[14] | Renjie GU, Jiawei ZHANG, Xueyang JIN, Lixiong WEN. Synthesis of nickel-cobalt hydroxide composites as supercapacitor materials by micro-impinging stream reactors and their performance study [J]. CIESC Journal, 2022, 73(8): 3749-3757. |
[15] | Jianfei SONG, Liqiang SUN, Ming XIE, Yaodong WEI. Experimental study of instability of gas-phase swirling flow in cyclone [J]. CIESC Journal, 2022, 73(7): 2858-2864. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 547
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 906
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||