14 |
Kim W K. Prediction model for self-similar propagation and blast wave generation of premixed flames[J]. International Journal of Hydrogen Energy, 2015, 40(34): 11087-11092.
|
15 |
Strehlow R A, Luckritz R T, Adamczyk A A, et al. The blast wave generated by spherical flames[J]. Combustion & Flame, 1979, 35(79): 297-310.
|
16 |
Li P L, Huang P, LIU Z Y, et al. Experimental study on vented explosion overpressure of methane/air mixtures in manhole[J]. Journal of Hazardous Materials, 2019, 374(15): 349-355.
|
17 |
Huang K, Sun Z Y, Tian Y C, et al. Turbulent combustion evolution of stoichiometric H2/CH4/air mixtures within a spherical space[J].International Journal of Hydrogen Energy, 2019,45(27): 10613-10622.
|
18 |
Ciccarelli G, Johansen C T, Parravani M. The role of shock-flame interactions on flame acceleration in an obstacle laden channel[J]. Combustion & Flame, 2010, 157(11): 2125-2136.
|
19 |
Harrison A J, Eyre J A. The effect of obstacle arrays on the combustion of large premixed gas/air clouds[J]. Combustion Science and Technology, 1987, 52(1/2/3): 121-137.
|
20 |
Wang C, Huang F, Addai E K, et al. Effect of concentration and obstacles on flame velocity and overpressure of methane-air mixture[J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 302-310.
|
21 |
Hall R, Masri A R, Yaroshchyk P, et al. Effects of position and frequency of obstacles on turbulent premixed propagating flames[J]. Combustion and Flame, 2009, 156(2): 439-446.
|
22 |
Kundu S, Zanganeh J, Moghtaderi B. A review on understanding explosions from methane-air mixture[J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 507-523.
|
23 |
Ibrahim S S, Masri A R. The effects of obstructions on overpressure resulting from premixed flame deflagration[J]. 2001, 14(3): 213-221.
|
24 |
Xu H, Li Y, Zhu P, et al. Experimental study on the mitigation via an ultra-fine water mist of methane/coal dust mixture explosions in the presence of obstacles[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 815-820.
|
25 |
Yu D M, Feng C G, Zeng Q X, et al. The damage of explosions and the division of their injury regions[J]. China Safety Science Journal, 1995(S2):13-17.
|
1 |
Vanderstraeten B, Tuerlinckx D, Berghmans J, et al. Experimental study of the pressure and temperature dependence of the upper flammability limit of methane/air mixtures[J]. Journal of Hazardous Materials, 1997, 56(3): 237-246.
|
2 |
Bunev V A, Bolshova T A, Babkin V S. The nature of the upper laminar flammability limit in methane-air mixtures at high pressures[J]. Doklady Physical Chemistry, 2013, 452(1): 197-199.
|
3 |
Checkel M D, Ting S K, Bushe W K. Flammability limits and burning velocities of ammonia/nitric oxide mixtures[J]. Journal of Loss Prevention in the Process Industries, 1995, 8(4): 215-220.
|
4 |
Chen J R, Tsai H Y, Chien J H, et al. Flow and flame visualization near the upper flammability limits of methane/air and propane/air mixtures at elevated pressures[J]. Journal of Loss Prevention in the Process Industries, 2011, 24(5): 662-670.
|
5 |
Gieras M, Klemens R, Rarata G, et al. Determination of explosion parameters of methane-air mixtures in the chamber of 40 dm3 at normal and elevated temperature[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2/3): 263-270.
|
6 |
Cui G, Wang S, Liu J G, et al. Explosion characteristics of a methane/air mixture at low initial temperatures[J]. Fuel, 2018, 234(15): 886-893.
|
7 |
Huang L B, Wang Y, Pei S F, et al. Effect of elevated pressure on the explosion and flammability limits of methane-air mixtures[J]. Energy, 2019, 186(1): 115840.
|
8 |
Zheng W, Kaplan C R, Houim R W, et al. Flame acceleration and transition to detonation: effects of a composition gradient in a mixture of methane and air[J]. Proceedings of the Combustion Institute, 2018, 37(3): S1540748918305364.
|
9 |
Guo Y B, He L G, Wang D G, et al. Numerical investigation of surface conduit parallel gas pipeline explosive based on the TNT equivalent weight method[J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 360-368.
|
10 |
Fernando D A, Enrique G F, Juan F S P, et al. Characteristic overpressure–impulse–distance curves for vapour cloud explosions using the TNO multi-energy model[J]. Journal of Hazardous Materials, 2006, 137(2): 734-741.
|
11 |
Dobashi R, Kawamura S, Kuwana K, et al. Consequence analysis of blast wave from accidental gas explosions[J]. Proc. of Combust. Inst., 2011, 33(2): 2295-2301.
|
12 |
Bao Q, Fang Q, Yang S, et al. Experimental investigation on the deflagration load under unconfined methane-air explosions[J]. Fuel, 2016, 185: 565-576.
|
13 |
Gostintsev Y A, Istratov A G, Shulenin Y V. Self-similar propagation of a free turbulent flame in mixed gas mixtures[J]. Combustion Explosion & Shock Waves, 1988, 24(5): 563-569.
|
26 |
李少鹏, 陈国华, 赵杰, 等. 开敞空间可燃气云爆炸冲击波超压及灾害动力响应研究评述[J]. 中国安全生产科学技术, 2019, 15(11): 11-17.
|
|
Li S P, Chen G H, Zhao J, et al. Research review on explosion shock wave overpressure and disaster dynamic response of open space combustible gas cloud[J]. Journal of Safety Science and Technology, 2019, 15(11): 11-17.
|
27 |
张斌. 大涡模拟滤波网格分析及网格自适应控制研究与应用[D]. 上海: 上海交通大学, 2011.
|
|
Zhang B. Grid analysis of large eddy simulation filter and research and application of grid adaptive control [D]. Shanghai: Shanghai Jiao Tong University, 2011.
|
28 |
Ales T, Miroslav M, Kozubková M. CFD simulation of vented explosion and turbulent flame propagation[J]. EPJ Web of Conferences, 2015, 92: 02101.
|
29 |
Kim W K, Mogi T, Kuwana K, et al. Prediction model for self-similar propagation and blast wave generation of premixed flames[J]. International Journal of Hydrogen Energy, 2015, 40(34): 11087-11092.
|
30 |
Kim W K, Mogi T, Kuwana K, et al. Self-similar propagation of expanding spherical flames in large scale gas explosions[J]. Proceedings of the Combustion Institute, 2015, 35(2): 2051-2058.
|
31 |
Malhotra A, Carson D, Mcfadden S. Blast pressure leakage into buildings and effects on humans[J]. Procedia Engineering, 2017, 210: 386-392.
|