CIESC Journal ›› 2020, Vol. 71 ›› Issue (8): 3710-3721.DOI: 10.11949/0438-1157.20200279
• Energy and environmental engineering • Previous Articles Next Articles
Ti DONG1(),Peng PENG1,Yiwei WANG1,Wenjiong CAO1,Yaodong ZHENG2,Bo LEI3,Fangming JIANG1(
)
Received:
2020-03-18
Revised:
2020-05-07
Online:
2020-08-05
Published:
2020-08-05
Contact:
Fangming JIANG
董缇1(),彭鹏1,王亦伟1,曹文炅1,郑耀东2,雷博3,蒋方明1(
)
通讯作者:
蒋方明
作者简介:
董缇(1989—),男,博士,助理研究员,基金资助:
CLC Number:
Ti DONG, Peng PENG, Yiwei WANG, Wenjiong CAO, Yaodong ZHENG, Bo LEI, Fangming JIANG. Simulation on lithium ion battery discharge process with large current[J]. CIESC Journal, 2020, 71(8): 3710-3721.
董缇, 彭鹏, 王亦伟, 曹文炅, 郑耀东, 雷博, 蒋方明. 锂离子电池大电流放电过程模拟研究[J]. 化工学报, 2020, 71(8): 3710-3721.
参数 | 正极集流体 | 负电极 | 隔膜 | 正电极 | 负极集流体 |
---|---|---|---|---|---|
厚度, L /μm | 10 | 60 | 25 | 64 | 20 |
密度, ρ/(kg·m-3) | 8900 | 2660 | 492 | 2500 | 2700 |
比热容, cp/(J·kg-1·K-1) | 385 | 1437.4 | 1978 | 700 | 903 |
热导率[ | 398 | 1.04 | 0.334 | 1.48 | 238 |
离子半径, r /μm | 10 | N/A | 8 | ||
初始SOC | 0.81 | 0.13 | |||
电极比面积, αs /(m2·m-3) | 1.77×105 | 2.40×105 | |||
固相最大锂离子浓度[ | 30555 | 51555 | |||
起始SOCa | 0.806 | 0.51 | |||
起始电解质浓度,ce /(mol·m-3) | 1000 | 1200 | 1000 | ||
交换电流密度参考值/(A·m-2) | 36 | 26 | |||
固相离子电导率, σ/(S·m-1) | 6.0×107 | 2.0 | 0 | 0.1 | 3.8×107 |
固相锂离子扩散系数, Ds /(m2·s-1) | 0 | 式(15) | 0 | 1×10-13 | 0 |
电解质相锂离子扩散系数, De/(m2·s-1) | 式(17) | ||||
活化能 Eact_Ds(锂离子扩散)/(J·mol-1) | 4000 | N/A | 20000 | ||
活化能Eact_i0(交换电流密度)/(J·mol-1) | 4000 | N/A | 4000 | ||
Bruggeman 指数 | 1.5 | 1.5 | 1.5 | ||
表观交换系数αa,αc | 0.5 | 0.5 | |||
接触电阻, Rc/ (Ω·m2) | 0.005 | ||||
锂离子转移系数t+0 | 0.363 | ||||
法拉第常数, F/(C·mol-1) | 96487.0 | ||||
参考温度, Tref/K | 298.15 |
Table 1 Model parameters of different regions from battery
参数 | 正极集流体 | 负电极 | 隔膜 | 正电极 | 负极集流体 |
---|---|---|---|---|---|
厚度, L /μm | 10 | 60 | 25 | 64 | 20 |
密度, ρ/(kg·m-3) | 8900 | 2660 | 492 | 2500 | 2700 |
比热容, cp/(J·kg-1·K-1) | 385 | 1437.4 | 1978 | 700 | 903 |
热导率[ | 398 | 1.04 | 0.334 | 1.48 | 238 |
离子半径, r /μm | 10 | N/A | 8 | ||
初始SOC | 0.81 | 0.13 | |||
电极比面积, αs /(m2·m-3) | 1.77×105 | 2.40×105 | |||
固相最大锂离子浓度[ | 30555 | 51555 | |||
起始SOCa | 0.806 | 0.51 | |||
起始电解质浓度,ce /(mol·m-3) | 1000 | 1200 | 1000 | ||
交换电流密度参考值/(A·m-2) | 36 | 26 | |||
固相离子电导率, σ/(S·m-1) | 6.0×107 | 2.0 | 0 | 0.1 | 3.8×107 |
固相锂离子扩散系数, Ds /(m2·s-1) | 0 | 式(15) | 0 | 1×10-13 | 0 |
电解质相锂离子扩散系数, De/(m2·s-1) | 式(17) | ||||
活化能 Eact_Ds(锂离子扩散)/(J·mol-1) | 4000 | N/A | 20000 | ||
活化能Eact_i0(交换电流密度)/(J·mol-1) | 4000 | N/A | 4000 | ||
Bruggeman 指数 | 1.5 | 1.5 | 1.5 | ||
表观交换系数αa,αc | 0.5 | 0.5 | |||
接触电阻, Rc/ (Ω·m2) | 0.005 | ||||
锂离子转移系数t+0 | 0.363 | ||||
法拉第常数, F/(C·mol-1) | 96487.0 | ||||
参考温度, Tref/K | 298.15 |
参数 | 负极 | 隔膜 PP/PE/PP | 正极 | 电解液 LiPF6/EC+DMC+EMC | ||||
---|---|---|---|---|---|---|---|---|
铜箔 | 碳 | 黏结剂等 | 铝箔 | LiCoO2 | 黏结剂等 | |||
ρ /(kg·m-3) | 8900 | 2660 | 1750 | 492 | 1500 | 2500 | 1750 | 1290 |
cp/(J·kg-1·K-1) | 385 | 1437.4 | 1120 | 1978 | 903 | 700 | 1120 | 133.9 |
k/(W·m-1·K-1) | 398 | 1.04 | 0.12 | 0.334 | 238 | 1.48 | 0.12 | 0.45 |
Table 2 Battery physical parameters
参数 | 负极 | 隔膜 PP/PE/PP | 正极 | 电解液 LiPF6/EC+DMC+EMC | ||||
---|---|---|---|---|---|---|---|---|
铜箔 | 碳 | 黏结剂等 | 铝箔 | LiCoO2 | 黏结剂等 | |||
ρ /(kg·m-3) | 8900 | 2660 | 1750 | 492 | 1500 | 2500 | 1750 | 1290 |
cp/(J·kg-1·K-1) | 385 | 1437.4 | 1120 | 1978 | 903 | 700 | 1120 | 133.9 |
k/(W·m-1·K-1) | 398 | 1.04 | 0.12 | 0.334 | 238 | 1.48 | 0.12 | 0.45 |
模型 | 方程 |
---|---|
控制方程 | |
能量方程 | |
SEI膜分解反应 | |
负电极材料与电解质反应 | |
正电极分解/ 正电极与电解质反应 | |
电解液分解反应 |
Table 3 Thermal abuse model of Li-ion battery
模型 | 方程 |
---|---|
控制方程 | |
能量方程 | |
SEI膜分解反应 | |
负电极材料与电解质反应 | |
正电极分解/ 正电极与电解质反应 | |
电解液分解反应 |
反应热/(J·kg-1) | 频率因子/s-1 | 活化能/(J·mol-1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hsei | Hne | Hpe | Hele | Asei | Ane | Ape | Ae | Ea,sei | Ea,ne | Ea,pe | Ea,e | ||
2.57×105 | 1.714×106 | 7.9×105 | 1.55×105 | 2.25×1015 | 2.5×1013 | 2.55×1014 | 5.14×1025 | 1.3508×105 | 1.3508×105 | 1.5888×105 | 2.74×105 | ||
初始无量纲常数 | 反应级数 | 材料组分/(kg·m-3) | |||||||||||
csei0 | cneg0 | α0 | cele0 | tsei0 | msei | mne,n | mpe,p1 | mpe,p2 | me | Wc | Wp | We | |
0.15 | 0.75 | 0.04 | 1 | 0.033 | 1 | 1 | 1 | 1 | 1 | 1.39×103 | 1.5×103 | 5×102 |
Table 4 Calculation parameters used in thermal abuse model
反应热/(J·kg-1) | 频率因子/s-1 | 活化能/(J·mol-1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hsei | Hne | Hpe | Hele | Asei | Ane | Ape | Ae | Ea,sei | Ea,ne | Ea,pe | Ea,e | ||
2.57×105 | 1.714×106 | 7.9×105 | 1.55×105 | 2.25×1015 | 2.5×1013 | 2.55×1014 | 5.14×1025 | 1.3508×105 | 1.3508×105 | 1.5888×105 | 2.74×105 | ||
初始无量纲常数 | 反应级数 | 材料组分/(kg·m-3) | |||||||||||
csei0 | cneg0 | α0 | cele0 | tsei0 | msei | mne,n | mpe,p1 | mpe,p2 | me | Wc | Wp | We | |
0.15 | 0.75 | 0.04 | 1 | 0.033 | 1 | 1 | 1 | 1 | 1 | 1.39×103 | 1.5×103 | 5×102 |
1 | Liu H, Wei Z, He W, et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review[J]. Energy Conversion and Management, 2017, 150: 304-330. |
2 | 程广玉, 高蕾, 顾洪汇, 等. 高功率锂离子电池的研制及快充性能[J]. 电池, 2019, 49(2): 94-97. |
Cheng G Y, Gao L, Gu H H, et al. Developing and fast charge performance of high power Li-ion battery [J]. Battery Bimonthly, 2019, 49(2): 94-97. | |
3 | 陈莹. 电动车用锂离子电池快速充电技术研究[D]. 无锡: 江南大学, 2018. |
Chen Y. The study of fast-charging control strategy of lithium-ion battery on electric vehicle[D]. Wuxi: Jiangnan University, 2018. | |
4 | 郭继鹏. 储能锂离子电池恒流与恒功率充放电特性研究[D]. 合肥: 合肥工业大学, 2018. |
Guo J P. Research on the characteristics of energy storage lithium-ion battery with constant current and constant power [D]. Hefei: Hefei University of Technology, 2018. | |
5 | Kim G H, Pesaran A, Spotnitz R. A three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of Power Sources, 2007, 170(2): 476-489. |
6 | Lu L, Han X, Li J, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. |
7 | 董缇, 彭鹏, 曹文炅, 等. 锂离子电池热管理和安全性研究[J]. 新能源进展, 2019, 7(1): 50-59. |
Dong T, Peng P, Cao W J, et al. Research on thermal management and safety of Li-ion batteries [J]. Advances in New and Renewable Energy, 2019, 7(1): 50-59. | |
8 | 邓远富, 曾振欧. 现代电化学[M].广州: 华南理工大学出版社, 2014: 150. |
Deng Y F, Zeng Z O. Modern Electrochemistry [M]. Guangzhou: South China University of Technology Press, 2014: 150 | |
9 | 梁斌, 段天平, 唐盛伟. 化学反应工程[M].北京: 科学出版社, 2010: 5. |
Liang B, Duan T P, Tang S W. Chemical Reaction Engineering[M]. Beijing: Science Press, 2010: 5. | |
10 | Grandjean T, Barai A, Hosseinzadeh E, et al. Large format lithium ion pouch cell full thermal characterisation for improved electric vehicle thermal management[J]. Journal of Power Sources, 2017, 359: 215-225. |
11 | Khandelwal A, Hariharan K S, Gambhire P, et al. Thermally coupled moving boundary model for charge–discharge of LiFePO4 /C cells[J]. Journal of Power Sources, 2015, 279: 180-196. |
12 | Lai Y, Du S, Ai L, et al. Insight into heat generation of lithium ion batteries based on the electrochemical-thermal model at high discharge rates[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13039-13049. |
13 | Jiang F, Peng P, Sun Y. Thermal analyses of LiFePO4/graphite battery discharge processes[J]. Journal of Power Sources, 2013, 243: 181-194. |
14 | Drake S J, Martin M, Wetz D A, et al. Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements[J]. Journal of Power Sources, 2015, 285: 266-273. |
15 | Basu S, Patil R S, Ramachandran S, et al. Non-isothermal electrochemical model for lithium-ion cells with composite cathodes[J]. Journal of Power Sources, 2015, 283: 132-150. |
16 | Doyle M, Newman J, Gozdz A S, et al. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. Journal of the Electrochemical Society, 1996, 143(6): 1890-1903. |
17 | Doyle M, Newman J. Analysis of capacity–rate data for lithium batteries using simplified models of the discharge process[J]. Journal of Applied Electrochemistry, 1997, 27(7): 846-856. |
18 | Smith K, Wang C Y. Solid-state diffusion limitations on pulse operation of a lithium ion cell for hybrid electric vehicles[J]. Journal of Power Sources, 2006, 161(1): 628-639. |
19 | Zhao W, Luo G, Wang C Y. Modeling internal shorting process in large-format Li-ion cells[J]. Journal of the Electrochemical Society, 2015, 162(7): A1352-A1364. |
20 | Ogihara N, Itou Y, Sasaki T, et al. Impedance spectroscopy characterization of porous electrodes under different electrode thickness using a symmetric cell for high-performance lithium-ion batteries[J]. Journal of Physical Chemistry C, 2015, 119(9): 4612-4619. |
21 | Doyle M, Fuller T F, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526. |
22 | Gu W, Wang C Y. Thermal-electrochemical modeling of battery systems[J]. Journal of the Electrochemical Society, 2000, 147(8): 2910-2922. |
23 | Fang W, Kwon O J, Wang C Y. Electrochemical-thermal modeling of automotive Li-ion batteries and experimental validation using a three-electrode cell[J]. International Journal of Energy Research, 2010, 34(2): 107-115. |
24 | Ramadass P, Haran B, Gomadam P M, et al. Development of first principles capacity fade model for Li-ion cells[J]. Journal of the Electrochemical Society, 2004, 151(2): A196-A203. |
25 | Guo G, Long B, Cheng B, et al. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application[J]. Journal of Power Sources, 2010, 195(8): 2393-2398. |
26 | Santhanagopalan S, Ramadass P, Zhang J. Analysis of internal short-circuit in a lithium ion cell[J]. Journal of Power Sources, 2009, 194(1): 550-557. |
27 | Peng P, Jiang F. Thermal behavior analyses of stacked prismatic LiCoO2 lithium-ion batteries during oven tests[J]. International Journal of Heat and Mass Transfer, 2015, 88: 411-423. |
28 | Hatchard T D, Macneil D D, Basu A, et al. Thermal model of cylindrical and prismatic lithium-ion cells[J]. Journal of the Electrochemical Society, 2001, 148(7): A755-A761. |
29 | Zhao W, Luo G, Wang C Y. Modeling nail penetration process in large-format Li-ion cells[J]. Journal of the Electrochemical Society, 2014, 162(1): A207-A217. |
30 | Dong T, Peng P, Jiang F, et al. Numerical modeling and analysis of the thermal behavior of NCM lithium-ion batteries subjected to very high C-rate discharge/charge operations[J]. International Journal of Heat and Mass Transfer, 2018: 261-272. |
31 | 毛亚, 白清友, 马尚德, 等. 循环老化对锂离子电池在绝热条件下的产热及热失控影响[J]. 储能科学与技术, 2018, 7(6): 172-179. |
Mao Y, Bai Q Y, Ma S D, et al. Influence of cycling on the heat-release and thermal runaway of the lithium ion battery under adiabatic condition[J]. Energy Storage Science and Technology, 2018, 7(6): 172-179. | |
32 | Yao K P C, Okasinski J S, Kalaga K, et al. Quantifying lithium concentration gradients in the graphite electrode of Li-ion cells using operando energy dispersive X-ray diffraction[J]. Energy & Environmental Science, 2019, 12(2): 656-665. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[7] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[8] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[9] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[10] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[11] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[12] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[13] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[14] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[15] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 283
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 649
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||