1 |
李征. 重金属污染水体的环境保护处理技术研究[J]. 环境与发展, 2018, 30(11): 110-111.
|
|
Li Z. Research on environmental protection treatment technology based on heavy metal polluted water body[J]. Environment and Development, 2018, 30(11): 110-111.
|
2 |
何家钦. 我国水体重金属污染现状与治理方法研究[J]. 中国金属通报, 2018, (4): 242-244.
|
|
He J Q. A study on the status and treatment of water and metal pollution in china[J]. China Metal Bulletin, 2018, (4): 242-244.
|
3 |
刘鑫. 水质重金属测定中原子吸收光谱法的运用分析[J]. 山东工业技术, 2019, (8): 36.
|
|
Liu X. Analysis of the application of atomic absorption spectrometry in the determination of heavy metals in water[J]. Shandong Industrial Technology, 2019, (8): 36.
|
4 |
Fernández-Delgado N, Herrera M, Tavabi A H, et al. Structural and chemical characterization of CdSe-ZnS core-shell quantum dots[J]. Applied Surface Science, 2018, 457: 93-97.
|
5 |
Völker J, Zhou X, Ma X, et al. Semiconductor nanocrystals with adjustable hole acceptors: tuning the fluorescence intensity by metal-ion binding[J]. Angewandte Chemie International Edition, 2010, 49(38): 6865-6868.
|
6 |
Pellegrino T, Kudera S, Liedl T, et al. On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications[J]. Small, 2005, 1(1): 48-63.
|
7 |
Hildebrandt N. Biofunctional quantum dots: controlled conjugation for multiplexed biosensors[J]. ACS Nano, 2011, 5(7): 5286-5290.
|
8 |
Chan W C, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science, 1998, 281(5385): 2016-2018.
|
9 |
Liu W, Howarth M, Greytak A B, et al. Compact biocompatible quantum dots functionalized for cellular imaging[J]. Journal of the American Chemical Society, 2008, 130(4): 1274-1284.
|
10 |
Liu W, Howarth M, Greytak A B, et al. Compact biocompatible quantum dots functionalized for cellular imaging[J]. Journal of the American Chemical Society, 2008, 130(4): 1274-1284.
|
11 |
Ellingson R J, Beard M C, Johnson J C, et al. Highly efficient multiple exciton generation in colloidal pbse and pbs quantum dots[J]. Nano Letters, 2005, 5(5): 865-871.
|
12 |
Schaller R D, Klimov V I. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion[J]. Phys. Rev. Lett., 2004, 92(18): 186601.
|
13 |
Kamat P V. Meeting the clean energy demand: nanostructure architectures for solar energy conversion[J]. The Journal of Physical Chemistry C, 2007, 111(7): 2834-2860.
|
14 |
Dos Santos G K C, Da Silva F G S, Yotsumoto Neto S, et al. Self-powered photoelectrochemical sensor for gallic acid exploiting a CdSe/ZnS core-shell quantum dot sensitized TiO2 as photoanode[J]. Electroanalysis, 2018, 30(8): 1750-1756.
|
15 |
张睿哲, 李可可, 张凯博, 等. 煤基碳量子点/氮化碳复合材料制备及其光催化还原CO2性能[J]. 化工学报, 2020, 71(6): 2788-2794.
|
|
Zhang R Z, Li K K, Zhang K B, et al. Coal-based carbon quantum dots/carbon nitride composites for photocatalytic CO2 reduction[J]. CIESC Journal, 2020, 71(6): 2788-2794.
|
16 |
Thompson T L, Yates J T. TiO2-based photocatalysis: surface defects, oxygen and charge transfer[J]. Topics in Catalysis, 2005, 35(3/4): 197-210.
|
17 |
Page L E, Zhang X, Jawaid A M, et al. Detection of toxic mercury ions using a ratiometric CdSe/ZnS nanocrystal sensor[J]. Chem. Commun., 2011, 47(27): 7773-7775.
|
18 |
Medintz I L, Clapp A R, Mattoussi H, et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors[J]. Nat. Mater, 2003, 2(9): 630-638.
|
19 |
Freeman R, Willner I. Optical molecular sensing with semiconductor quantum dots (QDs)[J]. Chem. Soc. Rev., 2012, 41(1): 467-485.
|
20 |
Silvi S, Credi A. Luminescent sensors based on quantum dot-molecule conjugates[J]. Chem. Soc. Rev., 2015, 44(13): 4275-4289.
|
21 |
Chen C, Cheng C, Lai C, et al. Potassium ion recognition by 15-crown-5 functionalized CdSe/ZnS quantum dots in H2O[J]. Chem. Commun., 2006, (3): 263-265.
|
22 |
Bomm J, Büchtemann A, Fiore A, et al. Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites[J]. Beilstein Journal of Nanotechnology, 2010, 1(1): 94-100.
|
23 |
Yildiz I, Deniz E, McCaughan B, et al. Hydrophilic CdSe-ZnS core-shell quantum dots with reactive functional groups on their surface[J]. Langmuir, 2010, 26(13): 11503-11511.
|
24 |
Snee P T, Somers R C, Nair G, et al. A ratiometric CdSe/ZnS nanocrystal pH sensor[J]. Journal of the American Chemical Society, 2006, 128(41): 13320-13321.
|
25 |
Ruedas-Rama M J, Hall E A H. Azamacrocycle activated quantum dot for zinc ion detection[J]. Analytical Chemistry, 2008, 80(21): 8260-8268.
|
26 |
Wang S, Liu R, Li C. Highly selective and sensitive detection of Hg2+ based on Forster resonance energy transfer between CdSe quantum dots and g-C3N4 nanosheets[J]. Nanoscale Research Letters, 2018, 13(1): 1-7.
|
27 |
Mi Y, Lei X, Han H, et al. A sensitive label-free FRET probe for glutathione based on CdSe/ZnS quantum dots and MnO2 nanosheets[J]. Analytical Methods, 2018, 10(34): 4170-4177.
|
28 |
Feliciano Crespo R, Perales Perez O J, Ramirez C. Total count of salmonella typhimurium coupled on water soluble CdSe quantum dots by fluorescence detection[J]. Journal of Electronic Materials, 2018, 47(8): 4379-4384.
|
29 |
Freeman R, Finder T, Bahshi L, et al. Beta-cyclodextrin-modified CdSe/ZnS quantum dots for sensing and chiroselective analysis[J]. Nano Letters, 2009, 9(5): 2073-2076.
|
30 |
Wang B, Prinsen P, Wang H, et al. Macroporous materials: microfluidic fabrication, functionalization and applications[J]. Chem. Soc. Rev., 2017, 46(3): 855-914.
|