CIESC Journal ›› 2020, Vol. 71 ›› Issue (9): 3849-3865.DOI: 10.11949/0438-1157.20200366
• Reviews and monographs • Previous Articles Next Articles
Dali CAI1,2(),Hao XIONG1,Chenxi ZHANG1,Fei WEI1()
Received:
2020-04-08
Revised:
2020-06-22
Online:
2020-09-05
Published:
2020-09-05
Contact:
Fei WEI
通讯作者:
魏飞
作者简介:
蔡达理(1991—),男,博士,工程师,基金资助:
CLC Number:
Dali CAI, Hao XIONG, Chenxi ZHANG, Fei WEI. From nanoscale discrete diffusion behavior control to macroscale coal chemical process[J]. CIESC Journal, 2020, 71(9): 3849-3865.
蔡达理, 熊昊, 张晨曦, 魏飞. 从分子筛上纳尺度离散行为控制到宏观煤化工过程[J]. 化工学报, 2020, 71(9): 3849-3865.
Add to citation manager EndNote|Ris|BibTeX
1 | The Global Chemical Industry. Catalyzing growth and addressing our worlds sustainability challenges[R]. International Council of Chemical Associations, 2019. |
2 | Chester A W, Derouane E G. Zeolite Characterization and Catalysis[M]. Netherlands: Springer, 2009. |
3 | Muhammad O H J, Kam E K T. Analysis of coke laydown in FCC catalyst through structured catalyst modelling and experimentation[J]. Catalysis Today, 1997, 38(1): 85-95. |
4 | Harding R H, Peters A W, Nee J R D. New developments in FCC catalyst technology[J]. Applied Catalysis A: General, 2001, 221(1/2): 389-396. |
5 | Stöcker M. Gas phase catalysis by zeolites[J]. Microporous and Mesoporous Materials, 2005, 82(3): 257-292. |
6 | Centi G, Ciambelli P, Perathoner S, et al. Environmental catalysis: trends and outlook[J]. Catalysis Today, 2002, 75(1): 3-15. |
7 | Armor J N. Environmental catalysis[J]. Applied Catalysis B: Environmental, 1992, 1(4): 221-256. |
8 | Farrauto R J, Heck R M. Environmental catalysis into the 21st century[J]. Catalysis Today, 2000, 55(1): 179-187. |
9 | Bereciartua P J, Á Cantín, Corma A, et al. Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene[J]. Science, 2017, 358(6366): 1068-1071. |
10 | Lai Z P, Bonilla G, Diaz I, et al. Microstructural optimization of a zeolite membrane for organic vapor separation[J]. Science, 2003, 300(5618): 456-460. |
11 | Yang R T. Gas Separation by Adsorption Processes[M]. Amsterdam: Elsevier Ltd., 1987: 632. |
12 | Louis B, Ocampo F, Yun H S, et al. Hierarchical pore ZSM-5 zeolite structures: from micro- to macro-engineering of structured catalysts[J]. Chemical Engineering Journal, 2010, 161(3): 397-402. |
13 | Guo G, Sun Q, Wang N, et al. Cost-effective synthesis of hierarchical SAPO-34 zeolites with abundant intracrystalline mesopores and excellent MTO performance[J]. Chemical Communications, 2018, 54(30): 3697-3700. |
14 | Liu Z, Ren S, Yu X, et al. Melting-assisted solvent-free synthesis of hierarchical SAPO-34 with enhanced methanol to olefins (MTO) performance[J]. Catalysis Science & Technology, 2018, 8(2): 423-427. |
15 | Yang S, Yu C, Yu L, et al. Bridging dealumination and desilication for the synthesis of hierarchical MFI zeolites[J]. Angewandte Chemie International Edition, 2017, 56(41): 12553-12556. |
16 | Milina M, Mitchell S, Crivelli P, et al. Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts[J]. Nature Communications, 2014, 5(1): 3922. |
17 | Meng L, Mezari B, Goesten M G, et al. Direct synthesis of hierarchical ZSM-5 zeolite using cetyltrimethylammonium as structure directing agent for methanol-to-hydrocarbons conversion[J]. Catalysis Science & Technology, 2017, 7(19): 4520-4533. |
18 | Liu Z, Hua Y, Wang J, et al. Recent progress in the direct synthesis of hierarchical zeolites: synthetic strategies and characterization methods[J]. Materials Chemistry Frontiers, 2017, 1(11): 2195-2212. |
19 | Keoh S H, Chaikittisilp W, Muraoka K, et al. Factors governing the formation of hierarchically and sequentially intergrown MFI zeolites by using simple diquaternary ammonium structure-directing agents[J]. Chemistry of Materials, 2016, 28(24): 8997-9007. |
20 | Cui Y, Zhang Q, He J, et al. Pore-structure-mediated hierarchical SAPO-34: facile synthesis, tunable nanostructure, and catalysis applications for the conversion of dimethyl ether into olefins[J]. Particuology, 2013, 11(4): 468-474. |
21 | Grand J, Talapaneni S N, Vicente A, et al. One-pot synthesis of silanol-free nanosized MFI zeolite[J]. Nature Materials, 2017, 16(10): 1010-1015. |
22 | Ma Y, Cai D, Li Y, et al. The influence of straight pore blockage on the selectivity of methanol to aromatics in nanosized Zn/ZSM-5: an atomic Cs-corrected STEM analysis study[J]. RSC Advances, 2016, 6(78): 74797-74801. |
23 | Ismail A A, Mohamed R M, Fouad O A, et al. Synthesis of nanosized ZSM-5 using different alumina sources[J]. Crystal Research and Technology, 2006, 41(2): 145-149. |
24 | Li Z, Martínez-Triguero J, Concepción P, et al. Methanol to olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution[J]. Physical Chemistry Chemical Physics, 2013, 15(35): 14670. |
25 | Whiting G T, Chung S, Stosic D, et al. Multiscale mechanistic insights of shaped catalyst body formulations and their impact on catalytic properties[J]. ACS Catalysis, 2019, 9(6): 4792-4803. |
26 | Coppens M, Froment G F. Diffusion and reaction in a fractal catalyst pore—I. Geometrical aspects[J]. Chemical Engineering Science, 1995, 50(6): 1013-1026. |
27 | Buurmans I L C, Ruiz-Martínez J, Knowles W V, et al. Catalytic activity in individual cracking catalyst particles imaged throughout different life stages by selective staining[J]. Nature Chemistry, 2011, 3(11): 862-867. |
28 | Ristanović Z, Kerssens M M, Kubarev A V, et al. High-resolution single-molecule fluorescence imaging of zeolite aggregates within real-life fluid catalytic cracking particles[J]. Angewandte Chemie International Edition, 2015, 54(6): 1836-1840. |
29 | Kox M H F, Stavitski E, Groen J C, et al. Visualizing the crystal structure and locating the catalytic activity of micro- and mesoporous ZSM-5 zeolite crystals by using in situ optical and fluorescence microscopy[J]. Chemistry - A European Journal, 2008, 14(6): 1718-1725. |
30 | Kärger J, Freude D. Mass transfer in micro- and mesoporous materials[J]. Chemical Engineering & Technology, 2002, 25(8): 769-778. |
31 | Chang C D, Silvestri A J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts[J]. Journal of Catalysis, 1977, 47(2): 249-259. |
32 | Ono Y, Mori T. Mechanism of methanol conversion into hydrocarbons over ZSM-5 zeolite[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1981, 77(9): 2209. |
33 | Chu C T, Chang C D. Methanol conversion to olefins over ZSM-5 (Ⅱ): Olefin distribution[J]. Journal of Catalysis, 1984, 86(2): 297-300. |
34 | Tajima N, Tsuneda T, Toyama F, et al. A new mechanism for the first carbon-carbon bond formation in the MTG process: a theoretical study[J]. Journal of the American Chemical Society, 1998, 120(32): 8222-8229. |
35 | Jackson J E, Bertsch F M. Conversion of methanol to gasoline: new mechanism for formation of the first carbon-carbon bond[J]. Journal of the American Chemical Society, 1990, 112(25): 9085-9092. |
36 | Martínez-Espín J S, de Wispelaere K, Janssens T V W, et al. Hydrogen transfer versus methylation: on the genesis of aromatics formation in the methanol-to-hydrocarbons reaction over H-ZSM-5[J]. ACS Catalysis, 2017, 7(9): 5773-5780. |
37 | Liu Y, Kirchberger F M, Müller S, et al. Critical role of formaldehyde during methanol conversion to hydrocarbons[J]. Nature Communications, 2019, 10(1): 1462. |
38 | Wilson S T, Lok B M, Messina C A, et al. Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids[J]. Journal of the American Chemical Society, 1982, 104(4): 1146-1147. |
39 | Kaiser S W. Production of light olefins: US4499327A[P]. 1985. |
40 | Cai D, Cui Y, Jia Z, et al. High-precision diffusion measurement of ethane and propane over SAPO-34 zeolites for methanol-to-olefin process[J]. Frontiers of Chemical Science and Engineering, 2018, 12(1): 77-82. |
41 | 李宏愿, 梁娟, 汪荣慧, 等. 硅磷酸铝分子筛SAPO-34的合成[J]. 石油化工, 1987, (5): 340-346. |
Li H Y, Liang J, Wang R H, et al. Synthesis of silicoaluminophosphate molecular sieve SAPO-34[J]. Petrochemical Technology, 1987, (5): 340-346. | |
42 | 李宏愿, 梁娟, 王租伟, 等. 硅磷酸铝分子筛合成与热稳定性考察[J]. 天然气化工(C1化学与化工), 1987, (6): 1-7. |
Li H Y, Liang J, Wang Z W, et al. Synthesis and thermal stability investigation of silicoaluminophosphate molecular sieve[J]. Natural Gas Chemical Industry, 1987, (6): 1-7. | |
43 | 李宏愿, 梁娟, 汪荣慧, 等. SAPO-34分子筛对甲醇转化制低碳烯烃催化性能考察[J]. 天然气化工(C1化学与化工), 1989, (2): 17-22. |
Li H Y, Liang J, Wang R H, et al. Investigation on the catalytic performance of SAPO-34 molecular sieve for the conversion of methanol to light olefins[J]. Natural Gas Chemical Industry, 1989, (2): 17-22. | |
44 | Dahl I M, Kolboe S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34(Ⅱ): Isotopic labeling studies of the co-reaction of propene and methanol[J]. Journal of Catalysis, 1996, 161(1): 304-309. |
45 | Dahl I M, Kolboe S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34(Ⅰ): Isotopic labeling studies of the co-reaction of ethene and methanol[J]. Journal of Catalysis, 1994, 149(2): 458-464. |
46 | Svelle S, Joensen F, Nerlov J, et al. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes[J]. Journal of the American Chemical Society, 2006, 128(46): 14770-14771. |
47 | Yarulina I, Chowdhury A D, Meirer F, et al. Recent trends and fundamental insights in the methanol-to-hydrocarbons process[J]. Nature Catalysis, 2018, 1(6): 398-411. |
48 | Zhang J, Su D, Zhang A, et al. Nanocarbon as robust catalyst: mechanistic insight into carbon-mediated catalysis[J]. Angewandte Chemie International Edition, 2007, 46(38): 7319-7323. |
49 | Zhang J, Liu X, Blume R, et al. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane[J]. Science, 2008, 322(5898): 73-77. |
50 | Liu X, Frank B, Zhang W, et al. Carbon-catalyzed oxidative dehydrogenation of n-butane: selective site formation during sp3-to-sp2 lattice rearrangement[J]. Angewandte Chemie International Edition, 2011, 50(14): 3318-3322. |
51 | Gao Y, Hu G, Zhong J, et al. Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation[J]. Angewandte Chemie International Edition, 2013, 52(7): 2109-2113. |
52 | Wen G, Gu Q, Liu Y, et al. Biomass-derived graphene-like carbon: efficient metal-free carbocatalysts for epoxidation[J]. Angewandte Chemie International Edition, 2018, 57(51): 16898-16902. |
53 | Cai D, Wang Q, Jia Z, et al. Equilibrium analysis of methylbenzene intermediates for a methanol-to-olefins process[J]. Catalysis Science & Technology, 2016, 6(5): 1297-1301. |
54 | Wang Z L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies[J]. The Journal of Physical Chemistry B, 2000, 104(6): 1153-1175. |
55 | Bosch E G T, Lazic I, Lazar S. Integrated differential phase contrast (iDPC) STEM: a new atomic resolution STEM technique to image all elements across the periodic table[J]. Microscopy and Microanalysis, 2016, 22(S3): 306-307. |
56 | Liu L, Wang N, Zhu C, et al. Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5[J]. Angewandte Chemie International Edition, 2020, 59(2): 819-825. |
57 | Shen B, Chen X, Shen K, et al. Imaging the node-linker coordination in the bulk and local structures of metal-organic frameworks[J]. Nature Communications, 2020, 11(1): 2692. |
58 | Shen B, Chen X, Cai D, et al. Atomic spatial and temporal imaging of local structures and light elements inside zeolite frameworks[J]. Advanced Materials, 2019, 32(4): 1906103. |
59 | Arslan M T, Ali B, Gilani S Z A, et al. Selective conversion of syngas into tetramethylbenzene via an aldol-aromatic mechanism[J]. ACS Catalysis, 2020, 10(4): 2477-2488. |
60 | Cai D, Wang N, Chen X, et al. Highly selective conversion of methanol to propylene: design of an MFI zeolite with selective blockage of (010) surfaces[J]. Nanoscale, 2019, 11(17): 8096-8101. |
61 | Cai D, Ma Y, Hou Y, et al. Establishing a discrete Ising model for zeolite deactivation: inspiration from the game of Go[J]. Catalysis Science & Technology, 2017, 7(12): 2440-2444. |
62 | West G B. The fourth dimension of life: fractal geometry and allometric scaling of organisms[J]. Science, 1999, 284(5420): 1677-1679. |
63 | Mandelbrot B B. The Fractal Geometry of Nature[M]. San Francisco: W. H. Freeman and Company, 1997. |
64 | Murray C D. The physiological principle of minimum work(Ⅰ): The vascular system and the cost of blood volume[J]. Proceedings of the National Academy of Sciences, 1926, 12(3): 207-214. |
65 | Taber L A, Ng S, Quesnel A M, et al. Investigating Murrays law in the chick embryo[J]. Journal of Biomechanics, 2001, 34(1): 121-124. |
66 | White C R, Seymour R S. Mammalian basal metabolic rate is proportional to body mass 2/3[J]. Proceedings of the National Academy of Sciences, 2003, 100(7): 4046-4049. |
67 | He J, Zhang J. Fifth dimension of life and the 4/5 allometric scaling law for human brain[J]. Cell Biology International, 2004, 28(11): 809-815. |
68 | Dodds P S. An experimental study of search in global social networks[J]. Science, 2003, 301(5634): 827-829. |
69 | Moreno Y, Nekovee M, Pacheco A F. Dynamics of rumor spreading in complex networks[J]. Physical Review E, 2004, 69(6): 66130. |
70 | van der Hofstad R. Random Graphs and Complex Networks[M]. Cambridge: Cambridge University Press, 2017. |
71 | Erdos P, Renyi A. On random graphs I[J]. Publicationes Mathematicae Debrecen, 1959, 6: 290-297. |
72 | Erdos P, Renyi A. On the evolution of random graphs[J]. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 1960, 5(1): 17-60. |
73 | 北京市统计局, 国家统计局北京调查总队. 北京统计年鉴2018[M]. 北京: 中国统计出版社, 2018. |
Beijing Municipal Bureau of Statistics, Beijing Survey Corps of the National Bureau of Statistics. Beijing Statistical Yearbook 2018[M].Beijing: China Statistics Press, 2018. | |
74 | Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684): 440-442. |
75 | Cai D, Hou Y, Zhang C, et al. Analyzing transfer properties of zeolites using small-world networks[J]. Nanoscale, 2018, 10(35): 16431-16433. |
76 | Meng X, Xiao F. Green routes for synthesis of zeolites[J]. Chemical Reviews, 2013, 114(2): 1521-1543. |
77 | Ma Y, Wang N, Qian W, et al. Molded MFI nanocrystals as a highly active catalyst in a methanol-to-aromatics process[J]. RSC Advances, 2016, 6(84): 81198-81202. |
78 | Zhu J, Cui Y, Nawaz Z, et al. In situ synthesis of SAPO-34 zeolites in kaolin microspheres for a fluidized methanol or dimethyl ether to olefins process[J]. Chinese Journal of Chemical Engineering, 2010, 18(6): 979-987. |
79 | Kong C, Zhu J, Liu S, et al. SAPO-34 with a low acidity outer layer by epitaxial growth and its improved MTO performance[J]. RSC Advances, 2017, 7(63): 39889-39898. |
80 | Zhang C, Qian W, Wang Y, et al. Heterogeneous catalysis in multi-stage fluidized bed reactors: from fundamental study to industrial application[J]. The Canadian Journal of Chemical Engineering, 2019, 97(3): 636-644. |
81 | Arslan M T, Qureshi B A, Gilani S Z A, et al. Single-step conversion of H2-deficient syngas into high yield of tetramethylbenzene[J]. ACS Catalysis, 2019, 9(3): 2203-2212. |
[1] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[2] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[3] | Hao XIONG, Xiaoyu LIANG, Chenxi ZHANG, Haolong BAI, Xiaoyu FAN, Fei WEI. Heavy oil to chemicals: multi-stage downer catalytic pyrolysis [J]. CIESC Journal, 2023, 74(1): 86-104. |
[4] | Yuen BAI, Binrui ZHANG, Dongyang LIU, Liang ZHAO, Jinsen GAO, Chunming XU. Influence of synergistic effect of acid properties and pore structure of ZSM-5 zeolite on the catalytic cracking performance of pentene [J]. CIESC Journal, 2023, 74(1): 438-448. |
[5] | Xu WANG, Leyao ZHANG, Haoxuan ZHANG, Jiahui YAN, Yushuai WU, Dong WU, Huiyong CHEN, Xiaoxun MA. Effect of hollow structure on the acetone adsorption property of tungsten-substituted MFI zeolite [J]. CIESC Journal, 2022, 73(3): 1194-1206. |
[6] | Chang SU, Xiaobo FENG, Liyun ZHANG, Feng CHEN, Xiaoyan ZHAO, Jingpei CAO. Effect of tetraethylammonium hydroxide treatment on the structure of HMOR zeolite and its catalytic performance in the carbonylation of dimethyl ether [J]. CIESC Journal, 2022, 73(2): 712-721. |
[7] | Chao ZHANG, Jian CHEN, Wenhua YIN, Yuanhui SHEN, Zhaoyang NIU, Xiuxin YU, Donghui ZHANG, Zhongli TANG. Transient analysis of pressure swing adsorption hydrogen purification process [J]. CIESC Journal, 2022, 73(1): 308-321. |
[8] | Jiahao LIANG, Guoqiang ZHANG, Yuan GAO, Jiao YIN, Huayan ZHENG, Zhong LI. Effect of mesoporous construction on catalytic performance of CuY methanol oxidative carbonylation [J]. CIESC Journal, 2021, 72(9): 4685-4697. |
[9] | Wanyue DING, Xiaohua MA. Effects of synthesis times and Si-Al ratio of SAPO-34 zeolite membrane on ethanol dehydration performance [J]. CIESC Journal, 2021, 72(8): 4410-4417. |
[10] | Xiaobo FENG, Tianlong LIU, Xiaoyan ZHAO, Jingpei CAO. Advance in ethanol synthesis from syngas via carbonylation of dimethyl ether and hydrogenation of methyl acetate [J]. CIESC Journal, 2021, 72(8): 3958-3967. |
[11] | CHENG Huige, NIU Wei, TANG Xinglei, YUE Liangxu, KANG Jincan, ZHANG Qinghong, WANG Ye. Synthesis of ethylbenzene from ethane and benzene by tandem catalysis [J]. CIESC Journal, 2021, 72(7): 3658-3667. |
[12] | NIU Xiaopo, XU Shuang, LI Xiaoxue, FENG Fuxiang, WANG Qingfa. Hollow Pt/ZSM-5 catalysts for highly selective hydrodeoxygenation of guaiacol to cycloalkanes [J]. CIESC Journal, 2021, 72(5): 2616-2625. |
[13] | Bo LIU, Yichang PAN, Rongfei ZHOU, Weihong XING. Research progress on microstructure regulation of molecular sieving membranes for H2/CH4 separation [J]. CIESC Journal, 2021, 72(12): 6073-6085. |
[14] | Zhen YANG, Jingpei CAO, Chen ZHU, Tianlong LIU, Xiaoyan ZHAO. Catalytic conversion of lignite pyrolysis volatiles for enriching light aromatics over B-ZSM-5 [J]. CIESC Journal, 2021, 72(11): 5633-5642. |
[15] | Gang WANG,Xuezhi DUAN,Weikang YUAN,Xinggui ZHOU. Mechanistic insights into catalytic isomerization of propylene oxide over TS-1 [J]. CIESC Journal, 2021, 72(10): 5150-5158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||