CIESC Journal ›› 2021, Vol. 72 ›› Issue (7): 3658-3667.DOI: 10.11949/0438-1157.20210050
• Catalysis, kinetics and reactors • Previous Articles Next Articles
CHENG Huige(),NIU Wei,TANG Xinglei,YUE Liangxu,KANG Jincan(),ZHANG Qinghong,WANG Ye
Received:
2021-01-09
Revised:
2021-04-12
Online:
2021-07-05
Published:
2021-07-05
Contact:
KANG Jincan
通讯作者:
康金灿
作者简介:
程挥戈(1996—),男,硕士研究生,基金资助:
CLC Number:
CHENG Huige, NIU Wei, TANG Xinglei, YUE Liangxu, KANG Jincan, ZHANG Qinghong, WANG Ye. Synthesis of ethylbenzene from ethane and benzene by tandem catalysis[J]. CIESC Journal, 2021, 72(7): 3658-3667.
程挥戈, 牛韦, 汤兴蕾, 岳亮旭, 康金灿, 张庆红, 王野. 乙烷与苯经接力催化路线制备乙苯[J]. 化工学报, 2021, 72(7): 3658-3667.
Add to citation manager EndNote|Ris|BibTeX
Reaction time/h | Element content/% (mass) | |||
---|---|---|---|---|
Ce | Mn | Al | Si | |
0 | 15.86 | 2.16 | 0.84 | 34.3 |
2.5 | 15.91 | 2.07 | 0.81 | 34.0 |
35 | 16.43 | 1.62 | 0.75 | 39.7 |
Table 1 XRF analysis of Mn/CeO2-H-ZSM-5 before and after catalytic reaction
Reaction time/h | Element content/% (mass) | |||
---|---|---|---|---|
Ce | Mn | Al | Si | |
0 | 15.86 | 2.16 | 0.84 | 34.3 |
2.5 | 15.91 | 2.07 | 0.81 | 34.0 |
35 | 16.43 | 1.62 | 0.75 | 39.7 |
1 | Cavani F, Trifirò F. Alternative processes for the production of styrene[J]. Applied Catalysis A: General, 1995, 133(2): 219-239. |
2 | Vrieland G E, Menon P G. Nature of the catalytically active carbonaceous sites for the oxydehydrogenation of ethylbenzene to styrene: a brief review[J]. Applied Catalysis, 1991, 77(1): 1-8. |
3 | Kainthla I, Bhanushali J T, Keri R S, et al. Activity studies of vanadium, iron, carbon and mixed oxides based catalysts for the oxidative dehydrogenation of ethylbenzene to styrene: a review[J]. Catalysis Science & Technology, 2015, 5(12): 5062-5076. |
4 | Bokade V V, Yadav G D. Heteropolyacid supported on acidic clay: a novel efficient catalyst for alkylation of ethylbenzene with dilute ethanol to diethylbenzene in presence of C8 aromatics[J]. Journal of Molecular Catalysis A: Chemical, 2008, 285(1/2): 155-161. |
5 | Yang W M, Wang Z D, Sun H M, et al. Advances in development and industrial applications of ethylbenzene processes[J]. Chinese Journal of Catalysis, 2016, 37(1): 16-26. |
6 | Liu S L, Chen F C, Xie S J, et al. Highly selective ethylbenzene production through alkylation of dilute ethylene with gas phase-liquid phase benzene and transalkylation feed[J]. Journal of Natural Gas Chemistry, 2009, 18(1): 21-24. |
7 | Zhong L, Yu F, An Y, et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016, 538(7623): 84-87. |
8 | Li Y J, Zhang T T. Integration and optimized utilization of naphtha resources[J]. China Petroleum Processing and Petrochemical Technology, 2010, 12(2): 51-56. |
9 | Haribal V P, Chen Y, Neal L, et al. Intensification of ethylene production from naphtha via a redox oxy-cracking scheme: process simulations and analysis[J]. Engineering, 2018, 4(5): 714-721. |
10 | 曹杰, 迟东训. 中国乙烯工业发展现状与趋势[J]. 国际石油经济, 2019, 27(12): 53-59. |
Cao J, Chi D X. Development status and trend of ethylene industry in China[J]. International Petroleum Economics, 2019, 27(12): 53-59. | |
11 | Zhao Z T, Chong K T, Jiang J Y, et al. Low-carbon roadmap of chemical production: a case study of ethylene in China[J]. Renewable and Sustainable Energy Reviews, 2018, 97: 580-591. |
12 | 黄格省, 师晓玉, 张彦, 等. 国内外乙烷裂解制乙烯发展现状及思考[J]. 现代化工, 2018, 38(10): 1-5. |
Huang G S, Shi X Y, Zhang Y, et al. Situation of ethylene production via ethane cracking and considerations[J]. Modern Chemical Industry, 2018, 38(10): 1-5. | |
13 | 徐海丰. 2018年世界乙烯行业发展状况与趋势[J]. 国际石油经济, 2019, 27(1): 82-88. |
Xu H F. Global ethylene industry in 2018 and its development trend[J]. International Petroleum Economics, 2019, 27(1): 82-88. | |
14 | Dasani D, Wang Y, Tsotsis T T, et al. Laboratory-scale investigation of sorption kinetics of methane/ethane mixtures in shale[J]. Industrial & Engineering Chemistry Research, 2017, 56(36): 9953-9963. |
15 | Scott A R. Composition of coalbed gases [J]. In Situ, 1994, 18(2): 185-208. |
16 | Nakano S, Yamamoto K, Ohgaki K. Natural gas exploitation by carbon dioxide from gas hydrate fields—high-pressure phase equilibrium for an ethane hydrate system[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 1998, 212(3): 159-163. |
17 | Choudhary V R, Uphade B S, Mulla S A R. Coupling of endothermic thermal cracking with exothermic oxidative dehydrogenation of ethane to ethylene using a diluted SrO/La2O3 catalyst[J]. Angewandte Chemie International Edition in English, 1995, 34(6): 665-666. |
18 | Yang J I, Kim J N, Cho S H, et al. Catalytic composites based on yttria stabilized zirconia for oxidative dehydrogenation of ethane[J]. Korean Journal of Chemical Engineering, 2004, 21(2): 381-384. |
19 | 温翯, 郭晓莉, 苟尕莲, 等. 乙烷裂解制乙烯的工艺研究进展[J]. 现代化工, 2020, 40(5): 47-51. |
Wen H, Guo X L, Gou G L, et al. Process research advances in ethane cracking to ethylene[J]. Modern Chemical Industry, 2020, 40(5): 47-51. | |
20 | Olah G A, Schilling P, Staral J S, et al. Electrophilic reactions at single bonds(ⅪⅤ): Anhydrous fluoroantimonic acid catalyzed alkylation of benzene with alkanes and alkane-alkene and alkane-alkylbenzene mixtures[J]. Journal of the American Chemical Society, 1975, 97(23): 6807-6810. |
21 | Isaev S A, Vasina T V, Bragin O V. Alkylation of benzene by propane over zeolite-containing pentasil-alumina compositions and dealuminated pentasils[J]. Bulletin of the Russian Academy of Sciences, Division of Chemical Science, 1992, 41(12): 2143-2146. |
22 | Kato S, Nakagawa K, Ikenaga N O, et al. Alkylation of benzene with ethane over platinum-loaded zeolite catalyst[J]. Catalysis Letters, 2001, 73(2/3/4): 175-180. |
23 | Lukyanov D, Vazhnova T. A kinetic study of benzene alkylation with ethane into ethylbenzene over bifunctional PtH-MFI catalyst[J]. Journal of Catalysis, 2008, 257(2): 382-389. |
24 | Zhou W, Kang J, Cheng K, et al. Direct conversion of syngas into methyl acetate, ethanol, and ethylene by relay catalysis via the intermediate dimethyl ether[J]. Angew. Chem. Int. Ed., 2018, 57(37): 12012-12016. |
25 | Zhou W, Cheng K, Kang J C, et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chemical Society Reviews, 2019, 48(12): 3193-3228. |
26 | Kang J, He S, Zhou W, et al. Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis[J]. Nature Communications, 2020, 11(1): 827. |
27 | Yu F C, Wu X J, Zhang Q H, et al. Oxidative dehydrogenation of ethane to ethylene in the presence of HCl over CeO2-based catalysts[J]. Chinese Journal of Catalysis, 2014, 35(8): 1260-1266. |
28 | Shavaleev D A, Pavlov M L, Basimova R A, et al. Synthesis of a zeolite-containing catalyst for gas-phase alkylation of benzene with ethylene[J]. Petroleum Chemistry, 2020, 60(10): 1164-1169. |
29 | Zhang Z Q, Ding J, Chai R J, et al. Oxidative dehydrogenation of ethane to ethylene: a promising CeO2-ZrO2-modified NiO-Al2O3/Ni-foam catalyst[J]. Applied Catalysis A: General, 2018, 550: 151-159. |
30 | Cheng K, Zhou W, Kang J C, et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem, 2017, 3(2): 334-347. |
31 | Cuo Z X, Wang D D, Gong Y, et al. A novel porous ceramic membrane supported monolithic Cu-doped Mn–Ce catalysts for benzene combustion[J]. Catalysts, 2019, 9(8): 652. |
32 | Gärtner C A, Van Veen A C, Lercher J A. Oxidative dehydrogenation of ethane: common principles and mechanistic aspects[J]. ChemCatChem, 2013, 5(11): 3196-3217. |
33 | Li C W, Sun Y, Hess F, et al. Catalytic HCl oxidation reaction: stabilizing effect of Zr-doping on CeO2 nano-rods[J]. Applied Catalysis B: Environmental, 2018, 239: 628-635. |
34 | Katada N, Igi H, Kim J H. Determination of the acidic properties of zeolite by theoretical analysis of temperature-programmed desorption of ammonia based on adsorption equilibrium[J]. The Journal of Physical Chemistry B, 1997, 101(31): 5969-5977. |
35 | 徐如人, 庞文琴, 霍启升, 等. 分子筛与多孔材料化学[M]. 2版. 北京: 科学出版社, 2015. |
Xu R R, Pang W Q, Huo Q S. Molecular Sieves and Porous Materials Chemistry [M]. 2nd ed. Beijing: Science Press, 2015. | |
36 | Shirazi L, Jamshidi E, Ghasemi M R. The effect of Si/Al ratio of ZSM-5 zeolite on its morphology, acidity and crystal size[J]. Crystal Research and Technology, 2008, 43(12): 1300-1306. |
37 | Zhu H B, Liu Z C, Kong D J, et al. Synthesis and catalytic performances of mesoporous zeolites templated by polyvinyl butyral gel as the mesopore directing agent[J]. The Journal of Physical Chemistry C, 2008, 112(44): 17257-17264. |
38 | Janssens T V W. A new approach to the modeling of deactivation in the conversion of methanol on zeolite catalysts[J]. Journal of Catalysis, 2009, 264(2): 130-137. |
39 | 刘巧玲. 含氯化氢废气的处理与回收利用[J]. 化工管理, 2017,(23): 226-228. |
Liu Q L. Treatment and recovery of waste gas containing hydrogen chloride [J]. Chemical Enterprise Management, 2017,(23): 226-228. | |
40 | 黄冬兰. 膜法分离丙烯和氯化氢混合气[D]. 大连: 大连理工大学, 2004. |
Huang D L. Study on separation of propylene/hydrogen chloride mixture gas by membrane technology[D]. Dalian: Dalian University of Technology, 2004. |
[1] | Yang WANG, Yongqiang DAI, Wei ZENG. Study of the enhanced thermoelectric properties of ionic hydrogel materials by 2,5-dihydroxybenzenesulfonate [J]. CIESC Journal, 2023, 74(9): 3946-3955. |
[2] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[3] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[4] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[5] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[6] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[7] | Mujin LI, Song HU, Depan SHI, Peng ZHAO, Rui GAO, Jinlong LI. A process for offgas absorption and purification of 1,2-butylene oxide [J]. CIESC Journal, 2023, 74(4): 1607-1618. |
[8] | Shuai WANG, Fukai YANG, Xinyu XU. Preparation and characterization of flame retardant bio-based polyols polyurethane foam [J]. CIESC Journal, 2023, 74(3): 1399-1408. |
[9] | Han HU, Liang YANG, Chunxiao LI, Daoping LIU. Kinetics of methane storage in the natural tobacco leaching filtrate in the hydrate form [J]. CIESC Journal, 2023, 74(3): 1313-1321. |
[10] | Xiaowan PENG, Xiaonan GUO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Modeling and simulation of CH4/N2 separation process with two absorption-adsorption columns using ZIF-8 slurry [J]. CIESC Journal, 2023, 74(2): 784-795. |
[11] | Hao XIONG, Xiaoyu LIANG, Chenxi ZHANG, Haolong BAI, Xiaoyu FAN, Fei WEI. Heavy oil to chemicals: multi-stage downer catalytic pyrolysis [J]. CIESC Journal, 2023, 74(1): 86-104. |
[12] | Yuen BAI, Binrui ZHANG, Dongyang LIU, Liang ZHAO, Jinsen GAO, Chunming XU. Influence of synergistic effect of acid properties and pore structure of ZSM-5 zeolite on the catalytic cracking performance of pentene [J]. CIESC Journal, 2023, 74(1): 438-448. |
[13] | Shanshan LIAO, Shaogang ZHANG, Junjun TAO, Jiahao LIU, Jinhui WANG. Numerical simulation analysis of vertical jet fire impinging on the pipeline [J]. CIESC Journal, 2022, 73(9): 4226-4234. |
[14] | Guojun XI, Zihan LIU, Guangping LEI. Enhanced adsorption and separation of low concentration coalbed methane based on synergistic effect between FeTPPs and CuBTC [J]. CIESC Journal, 2022, 73(9): 3940-3949. |
[15] | Dan GUO, Yujie FANG, Yihan XU, Zhiyuan LI, Shouying HUANG, Shengping WANG, Xinbin MA. Research progress of the catalytic conversion of ethane and carbon dioxide [J]. CIESC Journal, 2022, 73(8): 3406-3416. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||