CIESC Journal ›› 2021, Vol. 72 ›› Issue (11): 5633-5642.DOI: 10.11949/0438-1157.20210973
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Zhen YANG(),Jingpei CAO(),Chen ZHU,Tianlong LIU,Xiaoyan ZHAO
Received:
2021-07-14
Revised:
2021-09-06
Online:
2021-11-12
Published:
2021-11-05
Contact:
Jingpei CAO
通讯作者:
曹景沛
作者简介:
杨珍(1990—),女,博士研究生,基金资助:
CLC Number:
Zhen YANG, Jingpei CAO, Chen ZHU, Tianlong LIU, Xiaoyan ZHAO. Catalytic conversion of lignite pyrolysis volatiles for enriching light aromatics over B-ZSM-5[J]. CIESC Journal, 2021, 72(11): 5633-5642.
杨珍, 曹景沛, 朱陈, 刘天龙, 赵小燕. B-ZSM-5酸调控及催化褐煤热解挥发分制轻质芳烃研究[J]. 化工学报, 2021, 72(11): 5633-5642.
Add to citation manager EndNote|Ris|BibTeX
Samples | SBET①/(m2/g) | Smicro②/(m2/g) | Sext③/(m2/g) | Vt④/(cm3/g) | Vmicro⑤/(cm3/g) | Vext⑥/(cm3/g) | Dave⑦/nm |
---|---|---|---|---|---|---|---|
Na-H5 | 389 | 343 | 46 | 0.29 | 0.16 | 0.13 | 2.9 |
Na-0.23B-H5 | 396 | 342 | 54 | 0.29 | 0.16 | 0.13 | 3.0 |
Na-0.46B-H5 | 403 | 346 | 57 | 0.30 | 0.15 | 0.15 | 2.9 |
Na-0.69B-H5 | 406 | 344 | 62 | 0.33 | 0.15 | 0.18 | 3.3 |
H5 | 427 | 386 | 41 | 0.48 | 0.16 | 0.32 | 4.1 |
0.23B-H5 | 447 | 397 | 50 | 0.35 | 0.17 | 0.18 | 3.1 |
0.46B-H5 | 438 | 389 | 49 | 0.36 | 0.16 | 0.20 | 3.4 |
0.69B-H5 | 436 | 393 | 43 | 0.41 | 0.16 | 0.25 | 3.8 |
Table 1 Textural properties of Na-xB-H5 and xB-H5 with different B content
Samples | SBET①/(m2/g) | Smicro②/(m2/g) | Sext③/(m2/g) | Vt④/(cm3/g) | Vmicro⑤/(cm3/g) | Vext⑥/(cm3/g) | Dave⑦/nm |
---|---|---|---|---|---|---|---|
Na-H5 | 389 | 343 | 46 | 0.29 | 0.16 | 0.13 | 2.9 |
Na-0.23B-H5 | 396 | 342 | 54 | 0.29 | 0.16 | 0.13 | 3.0 |
Na-0.46B-H5 | 403 | 346 | 57 | 0.30 | 0.15 | 0.15 | 2.9 |
Na-0.69B-H5 | 406 | 344 | 62 | 0.33 | 0.15 | 0.18 | 3.3 |
H5 | 427 | 386 | 41 | 0.48 | 0.16 | 0.32 | 4.1 |
0.23B-H5 | 447 | 397 | 50 | 0.35 | 0.17 | 0.18 | 3.1 |
0.46B-H5 | 438 | 389 | 49 | 0.36 | 0.16 | 0.20 | 3.4 |
0.69B-H5 | 436 | 393 | 43 | 0.41 | 0.16 | 0.25 | 3.8 |
Catalysts | Acid/(mmol NH3/g) | Acidity density/ (mmol/m2) | Relative crystallinity① /% | Al②/% | B②/% | ||
---|---|---|---|---|---|---|---|
Weak (150~300℃) | Strong (300~500℃) | Total | |||||
Na-H5 | 0.12 | 0.12 | 0.24 | 0.00062 | 100 | — | — |
Na-0.23B-H5 | 0.18 | 0.14 | 0.32 | 0.00081 | 99.3 | — | — |
Na-0.46B-H5 | 0.22 | 0.13 | 0.35 | 0.00087 | 99.3 | — | — |
Na-0.69B-H5 | 0.20 | 0.14 | 0.34 | 0.00084 | 98.9 | — | — |
Na-0.92B-H5 | 0.21 | 0.13 | 0.34 | — | 99.1 | — | — |
H5 | 0.09 | 0.16 | 0.25 | 0.00059 | 99.8 | — | — |
0.23B-H5 | 0.15 | 0.11 | 0.26 | 0.00058 | 99.3 | 0.7 | 0.1 |
0.46B-H5 | 0.11 | 0.07 | 0.18 | 0.00041 | 99.2 | 0.8 | 0.2 |
0.69B-H5 | 0.09 | 0.05 | 0.14 | 0.00032 | 99.3 | 0.7 | 0.1 |
Table 2 Acidity distribution of Na-xB-H5 and xB-H5 with different B content
Catalysts | Acid/(mmol NH3/g) | Acidity density/ (mmol/m2) | Relative crystallinity① /% | Al②/% | B②/% | ||
---|---|---|---|---|---|---|---|
Weak (150~300℃) | Strong (300~500℃) | Total | |||||
Na-H5 | 0.12 | 0.12 | 0.24 | 0.00062 | 100 | — | — |
Na-0.23B-H5 | 0.18 | 0.14 | 0.32 | 0.00081 | 99.3 | — | — |
Na-0.46B-H5 | 0.22 | 0.13 | 0.35 | 0.00087 | 99.3 | — | — |
Na-0.69B-H5 | 0.20 | 0.14 | 0.34 | 0.00084 | 98.9 | — | — |
Na-0.92B-H5 | 0.21 | 0.13 | 0.34 | — | 99.1 | — | — |
H5 | 0.09 | 0.16 | 0.25 | 0.00059 | 99.8 | — | — |
0.23B-H5 | 0.15 | 0.11 | 0.26 | 0.00058 | 99.3 | 0.7 | 0.1 |
0.46B-H5 | 0.11 | 0.07 | 0.18 | 0.00041 | 99.2 | 0.8 | 0.2 |
0.69B-H5 | 0.09 | 0.05 | 0.14 | 0.00032 | 99.3 | 0.7 | 0.1 |
催化剂 | 气体产率/(mmol/g) | ||||||
---|---|---|---|---|---|---|---|
H2 | CH4 | C2H6 | C2H4 | C3~C4 | CO | CO2 | |
Na-H5 | 1.37 | 0.95 | 0.10 | 0.40 | 0.01 | 1.10 | 1.41 |
Na-0.23B-H5 | 1.40 | 0.89 | 0.08 | 0.31 | 0.01 | 1.23 | 0.86 |
Na-0.46B-H5 | 1.22 | 0.75 | 0.06 | 0.25 | 0.01 | 1.12 | 0.76 |
Na-0.69B-H5 | 1.16 | 0.76 | 0.06 | 0.26 | <0.01 | 1.16 | 0.62 |
Na-0.92B-H5 | 1.47 | 0.86 | 0.07 | 0.28 | <0.01 | 1.28 | 0.79 |
H5 | 1.23 | 0.81 | 0.07 | 0.30 | 0.01 | 1.25 | 0.78 |
0.23B-H5 | 1.06 | 0.83 | 0.08 | 0.31 | 0.01 | 1.23 | 0.76 |
0.46B-H5 | 1.26 | 0.84 | 0.08 | 0.32 | 0.02 | 1.26 | 0.89 |
0.69B-H5 | 1.13 | 0.85 | 0.09 | 0.34 | 0.01 | 1.27 | 1.01 |
Table 3 Gas yield of lignite catalytic pyrolysis over different catalysts
催化剂 | 气体产率/(mmol/g) | ||||||
---|---|---|---|---|---|---|---|
H2 | CH4 | C2H6 | C2H4 | C3~C4 | CO | CO2 | |
Na-H5 | 1.37 | 0.95 | 0.10 | 0.40 | 0.01 | 1.10 | 1.41 |
Na-0.23B-H5 | 1.40 | 0.89 | 0.08 | 0.31 | 0.01 | 1.23 | 0.86 |
Na-0.46B-H5 | 1.22 | 0.75 | 0.06 | 0.25 | 0.01 | 1.12 | 0.76 |
Na-0.69B-H5 | 1.16 | 0.76 | 0.06 | 0.26 | <0.01 | 1.16 | 0.62 |
Na-0.92B-H5 | 1.47 | 0.86 | 0.07 | 0.28 | <0.01 | 1.28 | 0.79 |
H5 | 1.23 | 0.81 | 0.07 | 0.30 | 0.01 | 1.25 | 0.78 |
0.23B-H5 | 1.06 | 0.83 | 0.08 | 0.31 | 0.01 | 1.23 | 0.76 |
0.46B-H5 | 1.26 | 0.84 | 0.08 | 0.32 | 0.02 | 1.26 | 0.89 |
0.69B-H5 | 1.13 | 0.85 | 0.09 | 0.34 | 0.01 | 1.27 | 1.01 |
1 | Li Z L, Lepore A W, Salazar M F, et al. Selective conversion of bio-derived ethanol to renewable BTX over Ga-ZSM-5[J]. Green Chemistry, 2017, 19(18): 4344-4352. |
2 | Xu Y B, Liu D P, Liu X H. Conversion of syngas toward aromatics over hybrid Fe-based Fischer-Tropsch catalysts and HZSM-5 zeolites[J]. Applied Catalysis A: General, 2018, 552: 168-183. |
3 | Yang Z, Cao J P, Liu T L, et al. Controllable hollow HZSM-5 for high shape-selectivity to light aromatics from catalytic reforming of lignite pyrolysis volatiles[J]. Fuel, 2021, 294: 120427. |
4 | 黄澎, 吴艳, 马博文, 等. 淖毛湖煤热解重油直接转化制备芳烃化合物研究[J]. 燃料化学学报, 2021, 49(5): 664-672. |
Huang P, Wu Y, Ma B W, et al. Study on direct conversion of Naomaohu coal pyrolysis heavy oil to aromatics[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 664-672. | |
5 | Ren X Y, Cao J P, Zhao X Y, et al. Increasing light aromatic products during upgrading of lignite pyrolysis vapor over Co-modified HZSM-5[J]. Journal of Analytical and Applied Pyrolysis, 2018, 130: 190-197. |
6 | Bi C Y, Wang X, You Q, et al. Catalytic upgrading of coal pyrolysis volatiles by Ga-substituted mesoporous ZSM-5[J]. Fuel, 2020, 267: 117217. |
7 | 张壮壮, 刘楠, 安重鑫, 等. 多级孔ZSM-5分子筛对低阶煤流化床快速热解产物分布的影响[J]. 燃料化学学报, 2021, 49(4): 407-414. |
Zhang Z Z, Liu N, An C X, et al. Effect of hierarchical ZSM-5 zeolites on product distribution of low rank coal fast pyrolysis in a fluidized bed[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 407-414. | |
8 | Zhao J P, Cao J P, Wei F, et al. Catalytic reforming of lignite pyrolysis volatiles over sulfated HZSM-5: significance of the introduced extra-framework Al species[J]. Fuel, 2020, 273: 117789. |
9 | Wei B Y, Yang H, Hu H Q, et al. Enhanced production of light tar from integrated process of in situ catalytic upgrading lignite tar and methane dry reforming over Ni/mesoporous Y[J]. Fuel, 2020, 279: 118533. |
10 | 郭淑佳, 王森, 罗耀亚, 等. H-ZSM-5分子筛形貌对ZnCr2O4/H-ZSM-5双功能催化剂合成气制芳烃催化性能的影响[J]. 燃料化学学报, 2020, 48(8): 970-979. |
Guo S J, Wang S, Luo Y Y, et al. Effect of H-ZSM-5 zeolite morphology on the performance of bifunctional ZnCr2O4/H-ZSM-5 catalysts in the direct conversion of syngas into aromatics[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 970-979. | |
11 | Wang K, Huang X, Li D B. Hollow ZSM-5 zeolite grass ball catalyst in methane dehydroaromatization: one-step synthesis and the exceptional catalytic performance[J]. Applied Catalysis A: General, 2018, 556: 10-19. |
12 | Yaripour F, Shariatinia Z, Sahebdelfar S, et al. Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction[J]. Microporous and Mesoporous Materials, 2015, 203: 41-53. |
13 | Karakaya Yalcin B, Ipek B. Fluoride-free synthesis of mesoporous [Al]-[B]-ZSM-5 using cetyltrimethylammonium bromide and methanol-to-olefin activity with high propene selectivity[J]. Applied Catalysis A: General, 2021, 610: 117915. |
14 | Sadeghpour P, Haghighi M, Khaledi K. High-temperature efficient isomorphous substitution of boron into ZSM-5 nanostructure for selective and stable production of ethylene and propylene from methanol[J]. Materials Chemistry and Physics, 2018, 217: 133-150. |
15 | Beheshti M S, Behzad M, Ahmadpour J, et al. Modification of H-[B]-ZSM-5 zeolite for methanol to propylene (MTP) conversion: Investigation of extrusion and steaming treatments on physicochemical characteristics and catalytic performance[J]. Microporous and Mesoporous Materials, 2020, 291: 109699. |
16 | 翟岩亮, 张少龙, 张络明, 等. 不同B, Al分布对ZSM-5分子筛的甲醇制丙烯反应性能的影响[J]. 物理化学学报, 2019, 35(11): 1248-1258. |
Zhai Y L, Zhang S L, Zhang L M, et al. Effect of B and Al distribution in ZSM-5 zeolite on methanol to propylene reaction performance[J]. Acta Physico-Chimica Sinica, 2019, 35(11): 1248-1258. | |
17 | Yang Y S, Sun C, Du J M, et al. The synthesis of endurable B-Al-ZSM-5 catalysts with tunable acidity for methanol to propylene reaction[J]. Catalysis Communications, 2012, 24: 44-47. |
18 | Zhou G Q, Li J, Yu Y Q, et al. Optimizing the distribution of aromatic products from catalytic fast pyrolysis of cellulose by ZSM-5 modification with boron and co-feeding of low-density polyethylene[J]. Applied Catalysis A: General, 2014, 487: 45-53. |
19 | Beheshti M S, Ahmadpour J, Behzad M, et al. Preparation of hierarchical H-[B]-ZSM-5 zeolites by a desilication method as a highly selective catalyst for conversion of methanol to propylene[J]. Brazilian Journal of Chemical Engineering, 2021, 38(1): 101-121. |
20 | Zhai Y L, Zhang S L, Shang Y S, et al. Boosting the turnover number of core–shell Al-ZSM-5@B-ZSM-5 zeolite for methanol to propylene reaction by modulating its gradient acid site distribution and low consumption diffusion[J]. Catalysis Science & Technology, 2019, 9(3): 659-671. |
21 | Xu A N, Ma H F, Zhang H T, et al. Effect of boron on ZSM-5 catalyst for methanol to propylene conversion[J]. Polish Journal of Chemical Technology, 2013, 15(4): 95-101. |
22 | Qiao Q W, Wang R J, Gou M L, et al. Catalytic performance of boron and aluminium incorporated ZSM-5 zeolites for isomerization of styrene oxide to phenylacetaldehyde[J]. Microporous and Mesoporous Materials, 2014, 195: 250-257. |
23 | Xiao H, Zhang J F, Wang P, et al. Mechanistic insight to acidity effects of Ga/HZSM-5 on its activity for propane aromatization[J]. RSC Advances, 2015, 5(112): 92222-92233. |
24 | Song Y Q, Zhu X X, Xie S J, et al. The effect of acidity on olefin aromatization over potassium modified ZSM-5 catalysts[J]. Catalysis Letters, 2004, 97(1/2): 31-36. |
25 | 汪青松, 李工, 郭剑桥, 等. 含硼杂原子Na-B-ZSM-5分子筛对甲醇脱氢制甲醛反应的催化性能[J]. 燃料化学学报, 2014, 42(5): 616-624. |
Wang Q S, Li G, Guo J Q, et al. Catalytic performance of boron-containing Na-B-ZSM-5 molecular sieves in methanol dehydrogenation to formaldehyde[J]. Journal of Fuel Chemistry and Technology, 2014, 42(5): 616-624. | |
26 | Venegas J M, McDermott W P, Hermans I. Serendipity in catalysis research: boron-based materials for alkane oxidative dehydrogenation[J]. Accounts of Chemical Research, 2018, 51(10): 2556-2564. |
27 | Shi L, Yan B, Shao D, et al. Selective oxidative dehydrogenation of ethane to ethylene over a hydroxylated boron nitride catalyst[J]. Chinese Journal of Catalysis, 2017, 38(2): 389-395. |
28 | Ye J H, Bai L, Liu B Y, et al. Fabrication of a pillared ZSM-5 framework for shape selectivity of ethane dehydroaromatization[J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7094-7106. |
29 | 仉利, 姚宗路, 赵立欣, 等. 生物质热化学转化提质及其催化剂研究进展[J]. 化工学报, 2020, 71(8): 3416-3427. |
Zhang L, Yao Z L, Zhao L X, et al. Research progress on thermochemical conversion of biomass to enhance quality and catalyst[J]. CIESC Journal, 2020, 71(8): 3416-3427. | |
30 | 王德亮, 陈兆辉, 余剑, 等. 不同硅铝比HZSM-5分子筛对煤热解挥发物催化提质的影响[J]. 燃料化学学报, 2021, 49(5): 634-640. |
Wang D L, Chen Z H, Yu J, et al. Effect of Si/Al ratio of HZSM-5 zeolites on catalytic upgrading of coal pyrolysis volatiles[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 634-640. | |
31 | 王洪华, 孙丽媛, 邢隆飞, 等. ZSM-5分子筛上轻烃裂解性能: 晶粒尺寸的影响[J]. 化工学报, 2015, 66(10): 3940-3949. |
Wang H H, Sun L Y, Xing L F, et al. Transformation of light hydrocarbons to olefins: effect of ZSM-5 zeolites crystal size[J]. CIESC Journal, 2015, 66(10): 3940-3949. | |
32 | Gou J S, Wang Z P, Li C, et al. The effects of ZSM-5 mesoporosity and morphology on the catalytic fast pyrolysis of furan[J]. Green Chemistry, 2017, 19(15): 3549-3557. |
33 | Chen J L, Liang T Y, Li J F, et al. Regulation of framework aluminum siting and acid distribution in H-MCM-22 by boron incorporation and its effect on the catalytic performance in methanol to hydrocarbons[J]. ACS Catalysis, 2016, 6(4): 2299-2313. |
34 | 姜凡. 硼硅分子筛的制备及其催化丙烷氧化脱氢反应的性能研究[D]. 大连: 大连理工大学, 2019. |
Jiang F. Preparation of borosilicate molecular sieves and their catalytic performance for oxidative dehydrogenation of propane[D]. Dalian: Dalian University of Technology, 2019. |
[1] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[2] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[5] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[6] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[7] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[8] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[9] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[10] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[11] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[12] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[13] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[14] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[15] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||