CIESC Journal ›› 2021, Vol. 72 ›› Issue (8): 3958-3967.DOI: 10.11949/0438-1157.20210079
• Reviews and monographs • Previous Articles Next Articles
Xiaobo FENG(),Tianlong LIU,Xiaoyan ZHAO,Jingpei CAO()
Received:
2021-01-12
Revised:
2021-05-09
Online:
2021-08-05
Published:
2021-08-05
Contact:
Jingpei CAO
通讯作者:
曹景沛
作者简介:
冯晓博 (1988—), 男, 博士, 基金资助:
CLC Number:
Xiaobo FENG, Tianlong LIU, Xiaoyan ZHAO, Jingpei CAO. Advance in ethanol synthesis from syngas via carbonylation of dimethyl ether and hydrogenation of methyl acetate[J]. CIESC Journal, 2021, 72(8): 3958-3967.
冯晓博, 刘天龙, 赵小燕, 曹景沛. 合成气与二甲醚为原料直接制乙醇催化反应研究进展[J]. 化工学报, 2021, 72(8): 3958-3967.
催化剂(Si/Al) | 反应条件 | DME转化率/% | 产物生成速率/(g/(gcat·h)) | 文献 |
---|---|---|---|---|
HMOR (10) | 190℃, 1.0 MPa, 93% CO/2% DME/5% Ar | — | 0.3 | [ |
HEU-12(10) | 220℃, 1.0 MPa, 4.1% CO/92.8% DME/3.0% Ar | 16 | 0.043 | [ |
HSSZ-13(9.2) | 165℃ 0.1 MPa, 2% DME, 3% He/5% Ar/95% CO, GHSV = 27000 ml/(g·h) | — | 0.009① | [ |
HSUZ-4(5.1) | 220℃, 2.0 MPa, 5% DME/50% CO/2.5Ar, GHSV = 1170 ml/(g·h) | 22 | 0.053 | [ |
HZSM-57(17.4) | 10 | 0.025 | [ | |
1.74% Cu/HMOR(9) | 210℃, 1.8 MPa, 38% CO/2% DME/3% N2 | 100 | 0.62 | [ |
1.30% Ni/HMMOR | 90 | 0.4 | [ | |
1.36% Co/HMOR | 100 | 0.47 | [ | |
1.67% Zn/HMOR | 81 | 0.35 | [ | |
1.64% Ag/HMOR | 42 | 0.22 | [ | |
3.2% Cu/HMOR(7) | 210℃, 1 MPa CO, 48 kPa DME, 50.0% CO/2.4% DME/2.9% H2/44.7% N2, GHSV=2100 ml/(g·h) | 76 | 0.2 | [ |
2% Cu-1% Zn/HMOR | 70 | 0.18 | [ | |
1.5%Cu-1.5%Zn/HMOR | 92 | 0.24 | [ | |
0.6%Cu-2.5Zn/HMOR | 77 | 0.2 | [ | |
HMOR (13.5) | 210℃, 1.0 MPa, 5% DME/50% CO/2.5% N2/42.5% He,GHSV = 1350 ml/ (g·h) | 35 | 0.24 | [ |
HMOR | 200℃, 2.0 MPa, 5% DME/35% CO/60% H2, GHSV = 1500 ml/(g·h) | 40 | 0.3 | [ |
HMOR(5.5) | 210℃, 1.5 MPa, 3% DME/95.5% CO/1.5% N2, GHSV = 5280 ml/(g·h) | 55 | 0.87 | [ |
HMOR (7.7) | 200℃, 1% DME/49% CO, 1.5 MPa, GHSV=6000 ml/(g·h) | 65 | 0.35 | [ |
HMOR (10.7) | 200℃, 1.5 MPa, 10% DME/ 50% CO/40% N2, GHSV= 2400 ml/(g·h) | 45 | 1.08 | [ |
HMOR (12.5) | 190℃, 1.5 MPa, 2.0% DME/98.0% CO, GHSV= 2000 ml/(g·h) | 92 | 0.37 | [ |
0.9% Fe/HMOR | 200℃, 3.0 MPa, 5% DME/ 35% CO/ 60% H2 | 82 | 0.19 | [ |
1.8% Fe/HMOR | 76 | 0.18 | [ | |
3.6% Fe/HMOR | 40 | 0.095 | [ | |
Ce/HMOR (0) | 200℃, 1.5 MPa, 1% DME/49% CO, GHSV= 2000 ml/(g·h) | 47 | 0.16 | [ |
Ce/HMOR (1.1) | 52 | 0.17 | [ | |
Ce/HMOR (2.1) | 60 | 0.2 | [ | |
Ce/HMOR (4.1) | 42 | 0.14 | [ | |
HMOR+TEAOH (8.2) | 200℃, 1.5 MPa, 1% DME/49% CO,GHSV= 2000 ml/(g·h) | 39 | 0.13 | [ |
HMOR+TEAOH (10.2) | 47 | 0.16 | [ | |
HMOR+TEAOH (11.8) | 42 | 0.14 | [ | |
HMOR+HMI (11.8) | 62 | 0.20 | [ | |
FER+PyR (13.2) | 200℃, 0.275 MPa, 51.1% DME/48.9% CO/Ar, GHSV= 3600 ml/(g·h) | — | 1.3① | [ |
FER+Pyr+TMA (17.0) | — | 0.8① | [ | |
FER+HMI+TMA(17.2) | — | < 0.1① | [ | |
Py/HMOR (6.4) | 200℃, 1.0 MPa, 5% DME/50% CO/2.5% N2/42.5% He, GHSV= 1250 ml/(g·h) | 35 | 0.22 | [ |
Table 1 The comparison of DME carbonylation over zeolite
催化剂(Si/Al) | 反应条件 | DME转化率/% | 产物生成速率/(g/(gcat·h)) | 文献 |
---|---|---|---|---|
HMOR (10) | 190℃, 1.0 MPa, 93% CO/2% DME/5% Ar | — | 0.3 | [ |
HEU-12(10) | 220℃, 1.0 MPa, 4.1% CO/92.8% DME/3.0% Ar | 16 | 0.043 | [ |
HSSZ-13(9.2) | 165℃ 0.1 MPa, 2% DME, 3% He/5% Ar/95% CO, GHSV = 27000 ml/(g·h) | — | 0.009① | [ |
HSUZ-4(5.1) | 220℃, 2.0 MPa, 5% DME/50% CO/2.5Ar, GHSV = 1170 ml/(g·h) | 22 | 0.053 | [ |
HZSM-57(17.4) | 10 | 0.025 | [ | |
1.74% Cu/HMOR(9) | 210℃, 1.8 MPa, 38% CO/2% DME/3% N2 | 100 | 0.62 | [ |
1.30% Ni/HMMOR | 90 | 0.4 | [ | |
1.36% Co/HMOR | 100 | 0.47 | [ | |
1.67% Zn/HMOR | 81 | 0.35 | [ | |
1.64% Ag/HMOR | 42 | 0.22 | [ | |
3.2% Cu/HMOR(7) | 210℃, 1 MPa CO, 48 kPa DME, 50.0% CO/2.4% DME/2.9% H2/44.7% N2, GHSV=2100 ml/(g·h) | 76 | 0.2 | [ |
2% Cu-1% Zn/HMOR | 70 | 0.18 | [ | |
1.5%Cu-1.5%Zn/HMOR | 92 | 0.24 | [ | |
0.6%Cu-2.5Zn/HMOR | 77 | 0.2 | [ | |
HMOR (13.5) | 210℃, 1.0 MPa, 5% DME/50% CO/2.5% N2/42.5% He,GHSV = 1350 ml/ (g·h) | 35 | 0.24 | [ |
HMOR | 200℃, 2.0 MPa, 5% DME/35% CO/60% H2, GHSV = 1500 ml/(g·h) | 40 | 0.3 | [ |
HMOR(5.5) | 210℃, 1.5 MPa, 3% DME/95.5% CO/1.5% N2, GHSV = 5280 ml/(g·h) | 55 | 0.87 | [ |
HMOR (7.7) | 200℃, 1% DME/49% CO, 1.5 MPa, GHSV=6000 ml/(g·h) | 65 | 0.35 | [ |
HMOR (10.7) | 200℃, 1.5 MPa, 10% DME/ 50% CO/40% N2, GHSV= 2400 ml/(g·h) | 45 | 1.08 | [ |
HMOR (12.5) | 190℃, 1.5 MPa, 2.0% DME/98.0% CO, GHSV= 2000 ml/(g·h) | 92 | 0.37 | [ |
0.9% Fe/HMOR | 200℃, 3.0 MPa, 5% DME/ 35% CO/ 60% H2 | 82 | 0.19 | [ |
1.8% Fe/HMOR | 76 | 0.18 | [ | |
3.6% Fe/HMOR | 40 | 0.095 | [ | |
Ce/HMOR (0) | 200℃, 1.5 MPa, 1% DME/49% CO, GHSV= 2000 ml/(g·h) | 47 | 0.16 | [ |
Ce/HMOR (1.1) | 52 | 0.17 | [ | |
Ce/HMOR (2.1) | 60 | 0.2 | [ | |
Ce/HMOR (4.1) | 42 | 0.14 | [ | |
HMOR+TEAOH (8.2) | 200℃, 1.5 MPa, 1% DME/49% CO,GHSV= 2000 ml/(g·h) | 39 | 0.13 | [ |
HMOR+TEAOH (10.2) | 47 | 0.16 | [ | |
HMOR+TEAOH (11.8) | 42 | 0.14 | [ | |
HMOR+HMI (11.8) | 62 | 0.20 | [ | |
FER+PyR (13.2) | 200℃, 0.275 MPa, 51.1% DME/48.9% CO/Ar, GHSV= 3600 ml/(g·h) | — | 1.3① | [ |
FER+Pyr+TMA (17.0) | — | 0.8① | [ | |
FER+HMI+TMA(17.2) | — | < 0.1① | [ | |
Py/HMOR (6.4) | 200℃, 1.0 MPa, 5% DME/50% CO/2.5% N2/42.5% He, GHSV= 1250 ml/(g·h) | 35 | 0.22 | [ |
1 | 孟迎, 白晓宇, 李凯, 等. 我国乙醇生产技术及煤制乙醇技术研究进展[J]. 煤炭与化工, 2017, 40(8): 21-23. |
Meng Y, Bai X Y, Li K, et al. Ethanol production technologies and research progress of the coal chemical industry to ethanol technology in China[J]. Coal and Chemical Industry, 2017, 40(8): 21-23. | |
2 | Subramani V, Gangwal S K. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol[J]. Energy & Fuels, 2008, 22(2): 814-839. |
3 | Choi Y, Liu P. Mechanism of ethanol synthesis from syngas on Rh(111)[J]. Journal of the American Chemical Society, 2009, 131(36): 13054-13061. |
4 | Mei D H, Rousseau R, Kathmann S M, et al. Ethanol synthesis from syngas over Rh-based/SiO2 catalysts: a combined experimental and theoretical modeling study[J]. Journal of Catalysis, 2010, 271(2): 325-342. |
5 | Lopez L, Montes V, Kušar H, et al. Syngas conversion to ethanol over a mesoporous Cu/MCM-41 catalyst: effect of K and Fe promoters[J]. Applied Catalysis A: General, 2016, 526: 77-83. |
6 | Portillo C M A, Villanueva P A L, Vidal-Barrero F, et al. Effects of methanol co-feeding in ethanol synthesis from syngas using alkali-doped MoS2 catalysts[J]. Fuel Processing Technology, 2015, 134: 270-274. |
7 | Forster D. On the mechanism of a rhodium-complex-catalyzed carbonylation of methanol to acetic acid[J]. Journal of the American Chemical Society, 1976, 98(3): 846-848. |
8 | Zhao S, Yue H R, Zhao Y J, et al. Chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate on Cu/SiO2: enhanced stability with boron dopant[J]. Journal of Catalysis, 2013, 297: 142-150. |
9 | 吕鹏, 徐钉, 申东明, 等. 串联催化剂在二甲醚与合成气制备乙醇反应中的性能研究[J]. 应用化工, 2017, 46(7): 1285-1289. |
Lyu P, Xu D, Shen D M, et al. Research of ethanol synthesis from dimethyl ether and syngas on tandem catalyst[J]. Applied Chemical Industry, 2017, 46(7): 1285-1289. | |
10 | Feng S Q, Lin X S, Song X G, et al. The role of H2 on the stability of the single-metal-site Ir1/AC catalyst for heterogeneous methanol carbonylation[J]. Journal of Catalysis, 2020, 381: 193-203. |
11 | Yashima T, Orikasa Y, Takahashi N, et al. Vapor phase carbonylation of methanol over RhY zeolite[J]. Journal of Catalysis, 1979, 59(1): 53-60. |
12 | Feng P, Fu X B. Direct vapor-phase carbonylation of methanol at atmospheric pressure on activated carbon-supported NiCl2-CuCl2 catalysts[J]. Catalysis Today, 2004, 93/94/95: 451-455. |
13 | Zhan E S, Xiong Z P, Shen W J. Dimethyl ether carbonylation over zeolites[J]. Journal of Energy Chemistry, 2019, 36: 51-63. |
14 | 王辉, 吴志连, 邰志军, 等. 合成气经二甲醚羰基化及乙酸甲酯加氢制无水乙醇的研究进展[J]. 化工进展, 2019, 38(10): 4497-4503. |
Wang H, Wu Z L, Tai Z J, et al. Advances in synthesis of anhydrous ethanol from syngas via carbonylation of dimethyl ether and hydrogenation of methyl acetate[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4497-4503. | |
15 | Cheung P, Bhan A, Sunley G J, et al. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites[J]. Angewandte Chemie International Edition, 2006, 45(10): 1617-1620. |
16 | Bhan A, Allian A D, Sunley G J, et al. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls[J]. Journal of the American Chemical Society, 2007, 129(16): 4919-4924. |
17 | Boronat M, Martínez-Sánchez C, Law D, et al. Enzyme-like specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO[J]. Journal of the American Chemical Society, 2008, 130(48): 16316-16323. |
18 | Rasmussen D B, Christensen J M, Temel B, et al. Ketene as a reaction intermediate in the carbonylation of dimethyl ether to methyl acetate over mordenite[J]. Angewandte Chemie International Edition, 2015, 54(25): 7261-7264. |
19 | He T, Ren P, Liu X, et al. Direct observation of DME carbonylation in the different channels of H-MOR zeolite by continuous-flow solid-state NMR spectroscopy[J]. Chemical Communications (Cambridge, England), 2015, 51(94): 16868-16870. |
20 | Cheung P, Bhan A, Sunley G J, et al. Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites[J]. Journal of Catalysis, 2007, 245(1): 110-123. |
21 | Reule A A C, Sawada J A, Semagina N. Effect of selective 4-membered ring dealumination on mordenite-catalyzed dimethyl ether carbonylation[J]. Journal of Catalysis, 2017, 349: 98-109. |
22 | Cheng Z Z, Huang S Y, Li Y, et al. Deactivation kinetics for the carbonylation of dimethyl ether to methyl acetate on H-MOR[J]. Industrial & Engineering Chemistry Research, 2017, 56(46): 13618-13627. |
23 | Zhou H, Zhu W L, Shi L, et al. In situ DRIFT study of dimethyl ether carbonylation to methyl acetate on H-mordenite[J]. Journal of Molecular Catalysis A: Chemical, 2016, 417: 1-9. |
24 | Liu Z Q, Yi X F, Wang G R, et al. Roles of 8-ring and 12-ring channels in mordenite for carbonylation reaction: from the perspective of molecular adsorption and diffusion[J]. Journal of Catalysis, 2019, 369: 335-344. |
25 | Feng X B, Yao J, Li H J, et al. A brand new zeolite catalyst for carbonylation reaction[J]. Chemical Communications, 2019, 55(8): 1048-1051. |
26 | Lusardi M, Chen T T, Kale M, et al. Carbonylation of dimethyl ether to methyl acetate over SSZ-13[J]. ACS Catalysis, 2020, 10(1): 842-851. |
27 | Xiong Z P, Zhan E S, Li M R, et al. DME carbonylation over a HSUZ-4 zeolite[J]. Chemical Communications, 2020, 56(23): 3401-3404. |
28 | Primo A, Garcia H. Zeolites as catalysts in oil refining[J]. Chemical Society Reviews, 2014, 43(22): 7548-7561. |
29 | Zhang Q, Yu J H, Corma A. Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities[J]. Advanced Materials, 2020, 32(44): 2002927. |
30 | Dusselier M, Davis M K. Small-pore zeolites: synthesis and catalysis[J]. ACS Catal., 2018, 118(11): 5265-5329. |
31 | Wang S R, Guo W W, Zhu L J, et al. Methyl acetate synthesis from dimethyl ether carbonylation over mordenite modified by cation exchange[J]. The Journal of Physical Chemistry C, 2015, 119(1): 524-533. |
32 | Blasco T, Boronat M, Concepción P, et al. Carbonylation of methanol on metal-acid zeolites: evidence for a mechanism involving a multisite active center[J]. Angewandte Chemie International Edition, 2007, 46(21): 3938-3941. |
33 | Li Y, Huang S Y, Cheng Z Z, et al. Synergy between Cu and Brønsted acid sites in carbonylation of dimethyl ether over Cu/H-MOR[J]. Journal of Catalysis, 2018, 365: 440-449. |
34 | Reule A A C, Semagina N. Zinc hinders deactivation of copper-mordenite: dimethyl ether carbonylation[J]. ACS Catalysis, 2016, 6(8): 4972-4975. |
35 | 冯琦瑶, 邢爱华, 张新锋, 等. ZSM-5分子筛在甲醇转化制烯烃领域应用的研究进展[J]. 工业催化, 2016, 24(1): 15-23. |
Feng Q Y, Xing A H, Zhang X F, et al. Research progress in the application of ZSM-5 molecular sieves in the methanol-to-olefin field[J]. Industrial Catalysis, 2016, 24(1): 15-23. | |
36 | 刘备, 鲁思武, 刘恩周, 等. 小晶粒HZSM-5分子筛合成及甲醇制芳烃催化性能[J]. 化学工程, 2018, 46(8): 11-15. |
Liu B, Lu S W, Liu E Z, et al. Synthesis of small crystal HZSM-5 zeolite and catalytic performance in methanol to aromatics[J]. Chemical Engineering (China), 2018, 46(8): 11-15. | |
37 | Zhang G Q, Bai T, Chen T F, et al. Conversion of methanol to light aromatics on Zn-modified nano-HZSM-5 zeolite catalysts[J]. Industrial & Engineering Chemistry Research, 2014, 53(39): 14932-14940. |
38 | Ma M, Huang X M, Zhan E S, et al. Synthesis of mordenite nanosheets with shortened channel lengths and enhanced catalytic activity[J]. Journal of Materials Chemistry A, 2017, 5(19): 8887-8891. |
39 | Yuan Y Y, Wang L Y, Liu H C, et al. Facile preparation of nanocrystal-assembled hierarchical mordenite zeolites with remarkable catalytic performance[J]. Chinese Journal of Catalysis, 2015, 36(11): 1910-1919. |
40 | Liu Y H, Zhao N, Xian H, et al. Facilely synthesized H-mordenite nanosheet assembly for carbonylation of dimethyl ether[J]. ACS Applied Materials & Interfaces, 2015, 7(16): 8398-8403. |
41 | He P, Li Y, Cai K, et al. Nano-assembled mordenite zeolite with tunable morphology for carbonylation of dimethyl ether[J]. ACS Applied Nano Materials, 2020, 3(7): 6460-6468. |
42 | Sheng H B, Qian W X, Zhang H T, et al. Synthesis of hierarchical porous H-mordenite zeolite for carbonylation of dimethyl ether[J]. Microporous and Mesoporous Materials, 2020, 295: 109950. |
43 | Wang X S, Li R J, Yu C C, et al. Enhancing the dimethyl ether carbonylation performance over mordenite catalysts by simple alkaline treatment[J]. Fuel, 2019, 239: 794-803. |
44 | Zhou H, Zhu W L, Shi L, et al. Promotion effect of Fe in mordenite zeolite on carbonylation of dimethyl ether to methyl acetate[J]. Catalysis Science & Technology, 2015, 5(3): 1961-1968. |
45 | Li Y, Huang S Y, Cheng Z Z, et al. Promoting the activity of Ce-incorporated MOR in dimethyl ether carbonylation through tailoring the distribution of Brønsted acids[J]. Applied Catalysis B: Environmental, 2019, 256: 117777. |
46 | Wang M X, Huang S Y, Lv J, et al. Modifying the acidity of H-MOR and its catalytic carbonylation of dimethyl ether[J]. Chinese Journal of Catalysis, 2016, 37(9): 1530-1537. |
47 | Román-Leshkov Y, Moliner M, Davis M E. Impact of controlling the site distribution of Al atoms on catalytic properties in ferrierite-type zeolites[J]. The Journal of Physical Chemistry C, 2011, 115(4): 1096-1102. |
48 | Liu J L, Xue H F, Huang X M, et al. Stability enhancement of H-mordenite in dimethyl ether carbonylation to methyl acetate by pre-adsorption of pyridine[J]. Chinese Journal of Catalysis, 2010, 31(7): 729-738. |
49 | Zhao N, Tian Y, Zhang L F, et al. Spacial hindrance induced recovery of over-poisoned active acid sites in pyridine-modified H-mordenite for dimethyl ether carbonylation[J]. Chinese Journal of Catalysis, 2019, 40(6): 895-904. |
50 | Cao K P, Fan D, Li L Y, et al. Insights into the pyridine-modified MOR zeolite catalysts for DME carbonylation[J]. ACS Catalysis, 2020, 10(5): 3372-3380. |
51 | Liu S P, Liu H C, Ma X G, et al. Identifying and controlling the acid site distributions in mordenite zeolite for dimethyl ether carbonylation reaction by means of selective ion-exchange[J]. Catalysis Science & Technology, 2020, 10(14): 4663-4672. |
52 | 杨天宇, 曹祖宾, 韩冬云, 等. 乙酸甲酯催化加氢制乙醇工艺[J]. 化工进展, 2015, 34(7): 1872-1876, 1904. |
Yang T Y, Cao Z B, Han D Y, et al. Process research on the catalytic hydrogenation of methyl acetate to ethanol[J]. Chemical Industry and Engineering Progress, 2015, 34(7): 1872-1876, 1904. | |
53 | Zhang B, Chen Y, Li J W, et al. High efficiency Cu-ZnO hydrogenation catalyst: the tailoring of Cu-ZnO interface sites by molecular layer deposition[J]. ACS Catalysis, 2015, 5(9): 5567-5573. |
54 | 冯翀, 俞金山, 刘甜甜, 等. 基于限域效应的铜基草酸二甲酯加氢催化剂研究进展[J]. 天然气化工(C1化学与化工), 2020, 45(3): 96-101. |
Feng C, Yu J S, Liu T T, et al. Research progress in confinement Cu-based catalysts for hydrogenation of dimethyl oxalate to ethylene glycol[J]. Natural Gas Chemical Industry, 2020, 45(3): 96-101. | |
55 | 关鹏搏. 脂肪醇制造与应用[M]. 北京: 轻工业出版社, 1990: 226-227. |
Guan P B. Production and Application of Fatty Alcohols [M]. Beijing: Light Industry Press, 1990: 226-227. | |
56 | Chen L F, Guo P J, Qiao M H, et al. Cu/SiO2 catalysts prepared by the ammonia-evaporation method: texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. Journal of Catalysis, 2008, 257(1): 172-180. |
57 | Wei Q H, Yang G H, Gao X H, et al. A facile ethanol fuel synthesis from dimethyl ether and syngas over tandem combination of Cu-doped HZSM35 with Cu-Zn-Al catalyst[J]. Chemical Engineering Journal, 2017, 316: 832-841. |
58 | Huang X M, Ma M, Miao S, et al. Hydrogenation of methyl acetate to ethanol over a highly stable Cu/SiO2 catalyst: reaction mechanism and structural evolution[J]. Applied Catalysis A: General, 2017, 531: 79-88. |
59 | Wang S R, Guo W W, Wang H X, et al. Effect of the Cu/SBA-15 catalyst preparation method on methyl acetate hydrogenation for ethanol production[J]. New Journal of Chemistry, 2014, 38(7): 2792-2800. |
60 | Wang D, Yang G H, Ma Q X, et al. Confinement effect of carbon nanotubes: copper nanoparticles filled carbon nanotubes for hydrogenation of methyl acetate[J]. ACS Catalysis, 2012, 2(9): 1958-1966. |
61 | Wang Y, Zhao Y J, Lv J, et al. Facile synthesis of Cu@CeO2 and its catalytic behavior for the hydrogenation of methyl acetate to ethanol[J]. ChemCatChem, 2017, 9(12): 2085-2090. |
62 | San X G, Zhang Y, Shen W J, et al. New synthesis method of ethanol from dimethyl ether with a synergic effect between the zeolite catalyst and metallic catalyst[J]. Energy & Fuels, 2009, 23(5): 2843-2844. |
63 | Feng X B, Yao J, Zeng Y, et al. More efficient ethanol synthesis from dimethyl ether and syngas over the combined nano-sized ZSM-35 zeolite with CuZnAl catalyst[J]. Catalysis Today, 2021, 369: 88-94. |
64 | Lu P, Chen Q J, Yang G H, et al. Space-confined self-regulation mechanism from a capsule catalyst to realize an ethanol direct synthesis strategy[J]. ACS Catal., 2020, 10(2): 1366-1374. |
[1] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[2] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[3] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[4] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[5] | Yangguang LYU, Peipei ZUO, Zhengjin YANG, Tongwen XU. Triazine framework polymer membranes for methanol/n-hexane separation via organic solvent nanofiltration [J]. CIESC Journal, 2023, 74(4): 1598-1606. |
[6] | Jinfeng HE, Xiuzhen LI, Jianyao KOU, Tingjie TAO, Can YU, Huan LIU, Yongyuan CHEN, Haojian ZHAO, Dahao JIANG, Xiaonian LI. Ethanol upgrading to higher alcohols over ordered mesoporous alumina supported Cu-based catalysts [J]. CIESC Journal, 2023, 74(3): 1082-1091. |
[7] | Chenyang SHEN, Kaihang SUN, Yueping ZHANG, Changjun LIU. Research progresses on In2O3 and In2O3 supported metal catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2023, 74(1): 145-156. |
[8] | Hao XIONG, Xiaoyu LIANG, Chenxi ZHANG, Haolong BAI, Xiaoyu FAN, Fei WEI. Heavy oil to chemicals: multi-stage downer catalytic pyrolysis [J]. CIESC Journal, 2023, 74(1): 86-104. |
[9] | Yuen BAI, Binrui ZHANG, Dongyang LIU, Liang ZHAO, Jinsen GAO, Chunming XU. Influence of synergistic effect of acid properties and pore structure of ZSM-5 zeolite on the catalytic cracking performance of pentene [J]. CIESC Journal, 2023, 74(1): 438-448. |
[10] | Wenhua DAI, Zhong XIN. Effect of Si-doped Cu/ZrO2 on the performance of catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2022, 73(8): 3586-3596. |
[11] | Yuelin WANG, Wei CHAO, Xiaocheng LAN, Zhipeng MO, Shuhuan TONG, Tiefeng WANG. Review of ethanol production via biological syngas fermentation [J]. CIESC Journal, 2022, 73(8): 3448-3460. |
[12] | Jun ZHANG, Sheng HU, Jing GU, Haoran YUAN, Yong CHEN. Catalytic hydrogenation of furfural over magnetic polymetallic materials derived from electroplating sludge in methanol [J]. CIESC Journal, 2022, 73(7): 2996-3006. |
[13] | Liyuan LI, Jianqiang WANG, Yi CHEN, Youdi GUO, Jian ZHOU, Zhicheng LIU, Yangdong WANG, Zaiku XIE. Study on the mesoscale mechanism of coking and deactivation of ZSM-5 catalyst in methanol to propylene reaction [J]. CIESC Journal, 2022, 73(6): 2669-2676. |
[14] | Jiaren ZHANG, Haichao LIU. Phase equilibrium of transesterification reaction system between soybean oil and methanol [J]. CIESC Journal, 2022, 73(5): 1920-1929. |
[15] | Wenliang MENG, Guixian LI, Huairong ZHOU, Jingwei LI, Jian WANG, Ke WANG, Xueying FAN, Dongliang WANG. A novel coal to methanol process with near zero CO2 emission by pulverized coal gasification integrated green hydrogen [J]. CIESC Journal, 2022, 73(4): 1714-1723. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 712
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 772
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||