1 |
Naderi E, Khorasani K. A data-driven approach to actuator and sensor fault detection, isolation and estimation in discrete-time linear systems[J]. Automatica, 2017, 85(Suppl. C): 165-178.
|
2 |
Zhang K, Hao H, Chen Z, et al. A comparison and evaluation of key performance indicator-based multivariate statistics process monitoring approaches[J]. Process Control, 2015, 33: 112-126.
|
3 |
Ge Z Q, Song Z H , Gao F R. Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3543-3562.
|
4 |
Yu H, Khan F, Garaniya V. A sparse PCA for nonlinear fault diagnosis and robust feature discovery of industrial processes[J]. AIChE J., 2016, 62(5): 1494-1513.
|
5 |
赵帅, 宋冰, 侍洪波. 基于加权互信息主元分析算法的质量相关故障检测[J]. 化工学报, 2018, 69(3): 962-973.
|
|
Zhao S, Song B, Shi H B. Quality-related fault detection based on weighted mutual information principal component analysis[J]. CIESC Journal, 2018, 69(3): 962-973.
|
6 |
Cai L, Tian X, Chen S. A process monitoring method based on noisy independent component analysis[J]. Neurocomputing, 2014, 127: 231-246.
|
7 |
Jiang B, Zhu X, Huang D, et al. A combined canonical variate analysis and Fisher discriminant analysis(CVA-FDA) approach for fault diagnosis[J]. Computers & Chemical Engineering, 2015, 77: 1-9.
|
8 |
Zhang Y, An J, Zhang H. Monitoring of time -varying processes using kernel independent component analysis[J]. Chemical Engineering Science, 2013, 88(Suppl. C): 23-32.
|
9 |
He X, Cai D, Yan S, et al. Neighborhood preserving embedding [C]// Tenth IEEE International Conference on Computer Vision. IEEE, 2005: 1208-1213.
|
10 |
He X, Niyogi P. Locality preserving projections [J]. Neural Inform. Process. Syst., 2003, 16(1): 153-160.
|
11 |
Song B, Tan S, Shi H. Time-space locality preserving coordination for multimode process monitoring[J]. Chemometrics & Intelligent Laboratory Systems, 2016, 151: 190-200.
|
12 |
Luo L, Bao S, Gao Z, et al. Tensor global-local preserving projections forbatch process monitoring[J]. Ind. Eng. Chem. Res., 2014, 53: 10166-10176.
|
13 |
Luo L, Bao S, Gao Z, et al. Batch process monitoring with tensor global-localstructure analysis[J]. Ind. Eng. Chem.Res., 2013, 52: 18031-18042.
|
14 |
Tong C, Yan X. Statistical process monitoring based on a multi-manifold projection algorithm[J]. Chemometrics & Intelligent Laboratory Systems, 2014, 130: 20-28.
|
15 |
Zhang M G, Ge Z Q, Song Z H, et al. Global-local structure analysis model and its application for fault detection and identification[J]. Ind. Eng. Chem. Res., 2011, 50(11): 6837-6848.
|
16 |
Jiang Q, Yan X. Nonlinear plant-wide process monitoring using MI-spectralclustering and Bayesian inference-based multiblock KPCA[J]. Process Control, 2015, 32: 38-50.
|
17 |
Lee J M, Yoo C, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chem. Eng. Sci., 2004, 59(1): 223-234.
|
18 |
Zhang H , Qi Y, Wang L, et al. Fault detection and diagnosis of chemical process using enhanced KECA[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 161: 61-69.
|
19 |
Luo L, Bao S, Mao J, et al. Nonlinear process monitoring based on kernel global-local preserving projections[J]. Journal of Process Control, 2016, 38: 11-21.
|
20 |
Zhao H T, Lai Z H, Chen Y D. Global - and - local- structure-based neural network for fault detection[J]. Neural Networks, 2019, 118: 43-53.
|
21 |
Huang G, Song S, Gupta J N D, et al. Semi- supervised and unsupervised extreme learning machines [J]. IEEE Transactions on Cybernetics, 2014, 44(12): 2405-2417.
|
22 |
蔡连芳, 田学民, 张妮. 一种基于改进 KICA 的非高斯过程故障检测方法[J]. 化工学报, 2012, 63(9): 2864-2868.
|
|
Cai L F, Tian X M, Zhang N. Non-Gaussian process fault detection method based on modified KICA[J]. CIESC Journal, 2012, 63(9): 2864-2868.
|
23 |
Yu H Y, Khan F. Improved latent variable models for nonlinear and dynamic process monitoring [J]. Chemical Engineering Science, 2017, 168: 328-338.
|
24 |
Ku W F, Robert H S, Christos G. Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1) : 179-196.
|
25 |
罗雄麟, 赵晓鹰, 吴博, 等. 乙烯精馏塔异常工况在线侦测与控制[J]. 化工学报, 2014, 65(11): 4517-4523.
|
|
Luo X L, Zhao X Y, Wu B, et al. Online detection and control of ethylene column abnormal condition[J]. CIESC Journal, 2014, 65(11): 4517-4523.
|
26 |
陈德呈.乙烯精馏过程软测量技术应用研究[D]. 上海: 华东理工大学, 2011.
|
|
Chen D C. Soft sensing technology in the ethylene distillation process applied research[D]. Shanghai: East China University of Science and Technology, 2011.
|
27 |
汪世杰, 王振雷, 王昕.基于 JIT-MOSVR 的软测量方法及应用[J]. 化工学报, 2017, 68(3): 947-955.
|
|
Wang S J, Wang Z L, Wang X. Soft-sensor method based on JIT-MOSVR and its application[J]. CIESC Journal, 2017, 68(3): 947-955.
|
28 |
Lyman P R, Georgakis C. Plant-wide control of the Tennessee Eastman problem [J]. Computers and Chemical Engineering, 1995, 19(3): 321-331.
|
29 |
周乐, 宋执环, 侯北平, 等. 一种鲁棒半监督建模方法及其在化工过程故障检测中的应用[J]. 化工学报, 2017, 68(3): 1109-1115.
|
|
Zhou L, Song Z H, Hou B P, et al. Robust semi- supervised modelling method and its application to fault detection in chemical processes [J]. CIESC Journal, 2017, 68(3): 1109-1115.
|
30 |
仓文涛, 杨慧中. 基于主元子空间富信息重构的过程监测方法[J]. 化工学报, 2018, 69(3): 1114-1120.
|
|
Cang W T, Yang H Z. A process monitoring method based on informative principal component subspace reconstruction [J]. CIESC Journal, 2018, 69(3): 1114-1120.
|