CIESC Journal ›› 2020, Vol. 71 ›› Issue (12): 5655-5663.DOI: 10.11949/0438-1157.20200417
• Process system engineering • Previous Articles Next Articles
XU Jing1(),WANG Zhenlei1(
),WANG Xin2
Received:
2020-04-21
Revised:
2020-06-23
Online:
2020-12-05
Published:
2020-12-05
Contact:
WANG Zhenlei
通讯作者:
王振雷
作者简介:
徐静(1996—),女,硕士研究生,基金资助:
CLC Number:
XU Jing,WANG Zhenlei,WANG Xin. Fault detection for chemical process based on nonlinear dynamic global-local preserving projections[J]. CIESC Journal, 2020, 71(12): 5655-5663.
徐静,王振雷,王昕. 基于非线性动态全局局部保留投影算法的化工过程故障检测[J]. 化工学报, 2020, 71(12): 5655-5663.
Item | GLPP | NDPCA | NDGLPP | |||
---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | |
FDR | 0.8713 | 1 | 0.9483 | 0.9759 | 0.9966 | 1 |
FAR | 0 | 0.0218 | 0.0218 | 0.0218 | 0.0175 | 0.0218 |
Table 2 Fault detection rate and false alarm rate of GLPP,NDPCA and NDGLPP algorithm in ethylene distillation process
Item | GLPP | NDPCA | NDGLPP | |||
---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | |
FDR | 0.8713 | 1 | 0.9483 | 0.9759 | 0.9966 | 1 |
FAR | 0 | 0.0218 | 0.0218 | 0.0218 | 0.0175 | 0.0218 |
Fault | GLPP | DPCA | DKPCA | NDPCA | NDGLPP | |||||
---|---|---|---|---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | T2 | SPE | T2 | SPE | |
1 | 99.75 | 99.13 | 99.37 | 99.87 | 99.52 | 99.75 | 99.50 | 99.50 | 99.12 | 100 |
2 | 98.63 | 97.63 | 98.75 | 97.12 | 98.62 | 97.37 | 98.12 | 98.50 | 97.62 | 97.50 |
3 | 3.25 | 2.00 | 9.65 | 4.76 | 9.39 | 4.63 | 2.38 | 3.26 | 10.14 | 0.63 |
4 | 2.00 | 4.00 | 3.88 | 1.25 | 3.75 | 1.25 | 13.77 | 12.28 | 21.03 | 15.39 |
5 | 26.38 | 25.63 | 27.07 | 8.27 | 27.03 | 17.40 | 35.71 | 38.47 | 39.92 | 34.04 |
6 | 100 | 100 | 100 | 99.75 | 100 | 99.75 | 100 | 100 | 99.37 | 100 |
7 | 47.50 | 46.38 | 45.43 | 21.15 | 45.56 | 25.91 | 49.69 | 53.57 | 40.43 | 53.19 |
8 | 98.13 | 94.13 | 97.75 | 88.11 | 97.75 | 95.74 | 97.75 | 98.25 | 90.49 | 96.25 |
9 | 0.63 | 0.50 | 1.75 | 1.38 | 1.88 | 1.38 | 1.25 | 2.38 | 0.5 | 2.88 |
10 | 88.88 | 34.88 | 50.44 | 39.05 | 50.31 | 41.05 | 56.80 | 58.32 | 80.10 | 75.84 |
11 | 46.88 | 24.75 | 19.40 | 53.07 | 18.52 | 53.44 | 23.78 | 29.66 | 16.52 | 16.90 |
12 | 99.25 | 95.00 | 99.12 | 91.99 | 99.12 | 96.25 | 97.37 | 97.87 | 92.62 | 94.24 |
13 | 95.88 | 92.75 | 94.24 | 94.49 | 94.24 | 94.87 | 94.49 | 94.74 | 96.75 | 95.87 |
14 | 100 | 95.00 | 97.25 | 100 | 97.12 | 100 | 90.74 | 91.99 | 12.52 | 99.87 |
15 | 9.88 | 11.75 | 12.77 | 1.88 | 12.52 | 1.88 | 29.79 | 28.16 | 31.04 | 33.92 |
Table 3 Fault detection rate of TE process
Fault | GLPP | DPCA | DKPCA | NDPCA | NDGLPP | |||||
---|---|---|---|---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | T2 | SPE | T2 | SPE | |
1 | 99.75 | 99.13 | 99.37 | 99.87 | 99.52 | 99.75 | 99.50 | 99.50 | 99.12 | 100 |
2 | 98.63 | 97.63 | 98.75 | 97.12 | 98.62 | 97.37 | 98.12 | 98.50 | 97.62 | 97.50 |
3 | 3.25 | 2.00 | 9.65 | 4.76 | 9.39 | 4.63 | 2.38 | 3.26 | 10.14 | 0.63 |
4 | 2.00 | 4.00 | 3.88 | 1.25 | 3.75 | 1.25 | 13.77 | 12.28 | 21.03 | 15.39 |
5 | 26.38 | 25.63 | 27.07 | 8.27 | 27.03 | 17.40 | 35.71 | 38.47 | 39.92 | 34.04 |
6 | 100 | 100 | 100 | 99.75 | 100 | 99.75 | 100 | 100 | 99.37 | 100 |
7 | 47.50 | 46.38 | 45.43 | 21.15 | 45.56 | 25.91 | 49.69 | 53.57 | 40.43 | 53.19 |
8 | 98.13 | 94.13 | 97.75 | 88.11 | 97.75 | 95.74 | 97.75 | 98.25 | 90.49 | 96.25 |
9 | 0.63 | 0.50 | 1.75 | 1.38 | 1.88 | 1.38 | 1.25 | 2.38 | 0.5 | 2.88 |
10 | 88.88 | 34.88 | 50.44 | 39.05 | 50.31 | 41.05 | 56.80 | 58.32 | 80.10 | 75.84 |
11 | 46.88 | 24.75 | 19.40 | 53.07 | 18.52 | 53.44 | 23.78 | 29.66 | 16.52 | 16.90 |
12 | 99.25 | 95.00 | 99.12 | 91.99 | 99.12 | 96.25 | 97.37 | 97.87 | 92.62 | 94.24 |
13 | 95.88 | 92.75 | 94.24 | 94.49 | 94.24 | 94.87 | 94.49 | 94.74 | 96.75 | 95.87 |
14 | 100 | 95.00 | 97.25 | 100 | 97.12 | 100 | 90.74 | 91.99 | 12.52 | 99.87 |
15 | 9.88 | 11.75 | 12.77 | 1.88 | 12.52 | 1.88 | 29.79 | 28.16 | 31.04 | 33.92 |
1 | Naderi E, Khorasani K. A data-driven approach to actuator and sensor fault detection, isolation and estimation in discrete-time linear systems[J]. Automatica, 2017, 85(Suppl. C): 165-178. |
2 | Zhang K, Hao H, Chen Z, et al. A comparison and evaluation of key performance indicator-based multivariate statistics process monitoring approaches[J]. Process Control, 2015, 33: 112-126. |
3 | Ge Z Q, Song Z H , Gao F R. Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3543-3562. |
4 | Yu H, Khan F, Garaniya V. A sparse PCA for nonlinear fault diagnosis and robust feature discovery of industrial processes[J]. AIChE J., 2016, 62(5): 1494-1513. |
5 | 赵帅, 宋冰, 侍洪波. 基于加权互信息主元分析算法的质量相关故障检测[J]. 化工学报, 2018, 69(3): 962-973. |
Zhao S, Song B, Shi H B. Quality-related fault detection based on weighted mutual information principal component analysis[J]. CIESC Journal, 2018, 69(3): 962-973. | |
6 | Cai L, Tian X, Chen S. A process monitoring method based on noisy independent component analysis[J]. Neurocomputing, 2014, 127: 231-246. |
7 | Jiang B, Zhu X, Huang D, et al. A combined canonical variate analysis and Fisher discriminant analysis(CVA-FDA) approach for fault diagnosis[J]. Computers & Chemical Engineering, 2015, 77: 1-9. |
8 | Zhang Y, An J, Zhang H. Monitoring of time -varying processes using kernel independent component analysis[J]. Chemical Engineering Science, 2013, 88(Suppl. C): 23-32. |
9 | He X, Cai D, Yan S, et al. Neighborhood preserving embedding [C]// Tenth IEEE International Conference on Computer Vision. IEEE, 2005: 1208-1213. |
10 | He X, Niyogi P. Locality preserving projections [J]. Neural Inform. Process. Syst., 2003, 16(1): 153-160. |
11 | Song B, Tan S, Shi H. Time-space locality preserving coordination for multimode process monitoring[J]. Chemometrics & Intelligent Laboratory Systems, 2016, 151: 190-200. |
12 | Luo L, Bao S, Gao Z, et al. Tensor global-local preserving projections forbatch process monitoring[J]. Ind. Eng. Chem. Res., 2014, 53: 10166-10176. |
13 | Luo L, Bao S, Gao Z, et al. Batch process monitoring with tensor global-localstructure analysis[J]. Ind. Eng. Chem.Res., 2013, 52: 18031-18042. |
14 | Tong C, Yan X. Statistical process monitoring based on a multi-manifold projection algorithm[J]. Chemometrics & Intelligent Laboratory Systems, 2014, 130: 20-28. |
15 | Zhang M G, Ge Z Q, Song Z H, et al. Global-local structure analysis model and its application for fault detection and identification[J]. Ind. Eng. Chem. Res., 2011, 50(11): 6837-6848. |
16 | Jiang Q, Yan X. Nonlinear plant-wide process monitoring using MI-spectralclustering and Bayesian inference-based multiblock KPCA[J]. Process Control, 2015, 32: 38-50. |
17 | Lee J M, Yoo C, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chem. Eng. Sci., 2004, 59(1): 223-234. |
18 | Zhang H , Qi Y, Wang L, et al. Fault detection and diagnosis of chemical process using enhanced KECA[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 161: 61-69. |
19 | Luo L, Bao S, Mao J, et al. Nonlinear process monitoring based on kernel global-local preserving projections[J]. Journal of Process Control, 2016, 38: 11-21. |
20 | Zhao H T, Lai Z H, Chen Y D. Global - and - local- structure-based neural network for fault detection[J]. Neural Networks, 2019, 118: 43-53. |
21 | Huang G, Song S, Gupta J N D, et al. Semi- supervised and unsupervised extreme learning machines [J]. IEEE Transactions on Cybernetics, 2014, 44(12): 2405-2417. |
22 | 蔡连芳, 田学民, 张妮. 一种基于改进 KICA 的非高斯过程故障检测方法[J]. 化工学报, 2012, 63(9): 2864-2868. |
Cai L F, Tian X M, Zhang N. Non-Gaussian process fault detection method based on modified KICA[J]. CIESC Journal, 2012, 63(9): 2864-2868. | |
23 | Yu H Y, Khan F. Improved latent variable models for nonlinear and dynamic process monitoring [J]. Chemical Engineering Science, 2017, 168: 328-338. |
24 | Ku W F, Robert H S, Christos G. Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1) : 179-196. |
25 | 罗雄麟, 赵晓鹰, 吴博, 等. 乙烯精馏塔异常工况在线侦测与控制[J]. 化工学报, 2014, 65(11): 4517-4523. |
Luo X L, Zhao X Y, Wu B, et al. Online detection and control of ethylene column abnormal condition[J]. CIESC Journal, 2014, 65(11): 4517-4523. | |
26 | 陈德呈.乙烯精馏过程软测量技术应用研究[D]. 上海: 华东理工大学, 2011. |
Chen D C. Soft sensing technology in the ethylene distillation process applied research[D]. Shanghai: East China University of Science and Technology, 2011. | |
27 | 汪世杰, 王振雷, 王昕.基于 JIT-MOSVR 的软测量方法及应用[J]. 化工学报, 2017, 68(3): 947-955. |
Wang S J, Wang Z L, Wang X. Soft-sensor method based on JIT-MOSVR and its application[J]. CIESC Journal, 2017, 68(3): 947-955. | |
28 | Lyman P R, Georgakis C. Plant-wide control of the Tennessee Eastman problem [J]. Computers and Chemical Engineering, 1995, 19(3): 321-331. |
29 | 周乐, 宋执环, 侯北平, 等. 一种鲁棒半监督建模方法及其在化工过程故障检测中的应用[J]. 化工学报, 2017, 68(3): 1109-1115. |
Zhou L, Song Z H, Hou B P, et al. Robust semi- supervised modelling method and its application to fault detection in chemical processes [J]. CIESC Journal, 2017, 68(3): 1109-1115. | |
30 | 仓文涛, 杨慧中. 基于主元子空间富信息重构的过程监测方法[J]. 化工学报, 2018, 69(3): 1114-1120. |
Cang W T, Yang H Z. A process monitoring method based on informative principal component subspace reconstruction [J]. CIESC Journal, 2018, 69(3): 1114-1120. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[3] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[4] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[5] | Huafu ZHANG, Lige TONG, Zhentao ZHANG, Junling YANG, Li WANG, Junhao ZHANG. Recent progress and development trend of mechanical vapor compression evaporation technology [J]. CIESC Journal, 2023, 74(S1): 8-24. |
[6] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[7] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[8] | Yingying TAN, Xiaoqing LIU, Lin WANG, Lisheng HUANG, Xiuzhen LI, Zhanwei WANG. Experimental study on startup dynamic characteristics of R1150/R600a auto-cascade refrigeration cycle [J]. CIESC Journal, 2023, 74(S1): 213-222. |
[9] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[10] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[11] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[12] | Yihao ZHANG, Zhenlei WANG. Fault detection using grouped support vector data description based on maximum information coefficient [J]. CIESC Journal, 2023, 74(9): 3865-3878. |
[13] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[14] | Xianheng YI, Wu ZHOU, Xiaoshu CAI, Tianyi CAI. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering [J]. CIESC Journal, 2023, 74(8): 3320-3328. |
[15] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 166
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 441
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||