CIESC Journal ›› 2023, Vol. 74 ›› Issue (4): 1570-1577.DOI: 10.11949/0438-1157.20221481
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Jian JIAN1(), Jiaming ZHANG2, Xiang SHE2, Hu ZHOU1, Kuiyi YOU2(), Hean LUO2()
Received:
2022-11-14
Revised:
2023-03-06
Online:
2023-06-02
Published:
2023-04-05
Contact:
Kuiyi YOU, Hean LUO
蹇建1(), 张嘉明2, 佘祥2, 周虎1, 游奎一2(), 罗和安2()
通讯作者:
游奎一,罗和安
作者简介:
蹇建(1988—),男,博士,讲师,jianjianjqr@126.com
基金资助:
CLC Number:
Jian JIAN, Jiaming ZHANG, Xiang SHE, Hu ZHOU, Kuiyi YOU, Hean LUO. Correlation with the redox V4+/V5+ ratio in VPO catalysts for oxidation of cyclohexane by NO2[J]. CIESC Journal, 2023, 74(4): 1570-1577.
蹇建, 张嘉明, 佘祥, 周虎, 游奎一, 罗和安. V4+和V5+比例对钒磷氧催化NO2氧化环己烷性能的影响[J]. 化工学报, 2023, 74(4): 1570-1577.
Catalyst | Crystal phase ratio/% | ||
---|---|---|---|
β-VOPO4 | (VO)2P2O7 | AlV18PO49 | |
Cr/Al-VPO | 85.41 | 2.34 | 12.25 |
Co/Al-VPO | 59.88 | 22.82 | 17.31 |
Cu/Al-VPO | 33.10 | 38.72 | 28.18 |
Ni/Al-VPO | 32.55 | 45.33 | 22.12 |
Mn/Al-VPO | 33.41 | 46.95 | 19.64 |
Table 1 The relative ratio of β-VOPO4, (VO)2P2O7 and AlV18PO49 crystalline phases in M/Al-VPO catalysts
Catalyst | Crystal phase ratio/% | ||
---|---|---|---|
β-VOPO4 | (VO)2P2O7 | AlV18PO49 | |
Cr/Al-VPO | 85.41 | 2.34 | 12.25 |
Co/Al-VPO | 59.88 | 22.82 | 17.31 |
Cu/Al-VPO | 33.10 | 38.72 | 28.18 |
Ni/Al-VPO | 32.55 | 45.33 | 22.12 |
Mn/Al-VPO | 33.41 | 46.95 | 19.64 |
Catalyst | V 2p2/3/eV | V5+ /% | V4+/% | V4+/V5+ | |
---|---|---|---|---|---|
V5+ | V4+ | ||||
β-VOPO4 | 518.1 | — | 100 | 0 | 0 |
Cr/Al-VPO | 518.4 | 517.0 | 89.0 | 11.0 | 0.12 |
Co/Al-VPO | 518.7 | 516.5 | 72.1 | 27.9 | 0.39 |
Cu/Al-VPO | 518.7 | 516.6 | 65.6 | 34.4 | 0.52 |
Ni/Al-VPO | 518.3 | 516.9 | 60.3 | 39.7 | 0.66 |
Mn/Al-VPO | 518.8 | 516.6 | 55.1 | 44.9 | 0.81 |
Table 2 The percentages of V5+ and V4+ in various M/Al-VPO composite catalysts
Catalyst | V 2p2/3/eV | V5+ /% | V4+/% | V4+/V5+ | |
---|---|---|---|---|---|
V5+ | V4+ | ||||
β-VOPO4 | 518.1 | — | 100 | 0 | 0 |
Cr/Al-VPO | 518.4 | 517.0 | 89.0 | 11.0 | 0.12 |
Co/Al-VPO | 518.7 | 516.5 | 72.1 | 27.9 | 0.39 |
Cu/Al-VPO | 518.7 | 516.6 | 65.6 | 34.4 | 0.52 |
Ni/Al-VPO | 518.3 | 516.9 | 60.3 | 39.7 | 0.66 |
Mn/Al-VPO | 518.8 | 516.6 | 55.1 | 44.9 | 0.81 |
催化剂 | CBrCl3转化率/% | 选择性/% | |
---|---|---|---|
溴代环己烷 | 氯代环己烷 | ||
无 | 0.11 | trace | trace |
(VO)2P2O7 | 22.9 | 94.3 | 4.2 |
β-VOPO4 | 68.6 | 83.5 | 12.8 |
Cu/Al-VPO | 87.4 | 83.9 | 11.8 |
Ni/Al-VPO | 76.6 | 84.3 | 12.1 |
Mn/Al-VPO | 73.4 | 86.5 | 11.2 |
Co/Al-VPO | 72.5 | 84.9 | 12.3 |
Cr/Al-VPO | 72.2 | 85.2 | 12.6 |
Ni/Al-VPO① | 0 | — | — |
Table 3 Results of radical capture experiment
催化剂 | CBrCl3转化率/% | 选择性/% | |
---|---|---|---|
溴代环己烷 | 氯代环己烷 | ||
无 | 0.11 | trace | trace |
(VO)2P2O7 | 22.9 | 94.3 | 4.2 |
β-VOPO4 | 68.6 | 83.5 | 12.8 |
Cu/Al-VPO | 87.4 | 83.9 | 11.8 |
Ni/Al-VPO | 76.6 | 84.3 | 12.1 |
Mn/Al-VPO | 73.4 | 86.5 | 11.2 |
Co/Al-VPO | 72.5 | 84.9 | 12.3 |
Cr/Al-VPO | 72.2 | 85.2 | 12.6 |
Ni/Al-VPO① | 0 | — | — |
1 | Liang F T, Zhong W Z, Xiang L P, et al. Synergistic hydrogen atom transfer with the active role of solvent: preferred one-step aerobic oxidation of cyclohexane to adipic acid by N-hydroxyphthalimide[J]. Journal of Catalysis, 2019, 378: 256-269. |
2 | Vernekar D, Dayyan M, Ratha S, et al. Direct oxidation of cyclohexane to adipic acid by a WFeCoO(OH) catalyst: role of Brønsted acidity and oxygen vacancies[J]. ACS Catalysis, 2021, 11(17): 10754-10766. |
3 | Wei H L, Liu S E, Li G X, et al. Numerical modeling of a microreactor for the synthesis of adipic acid via KA oil oxidation[J]. Chemical Engineering Science, 2021, 230: 116208. |
4 | 巩有奎, 赵强, 彭永臻. 不同C/N下SBBR脱氮过程N2O释放及胞外多聚物变化[J].化工学报, 2019, 70(12): 4847-4855. |
Gong Y K, Zhao Q, Peng Y Z. Variation of N2O emission and EPS production during simultaneous nitrification and denitrification in SBBR under different C/N ratio[J]. CIESC Journal, 70(12): 4847-4855. | |
5 | Sato K, Aoki M, Noyori R. A “green” route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide[J]. Science, 1998, 281(5383): 1646-1647. |
6 | Tortajada A, Ninokata R, Martin R. Ni-catalyzed site-selective dicarboxylation of 1,3-dienes with CO2 [J]. Journal of the American Chemical Society, 2018, 140(6): 2050-2053. |
7 | Deng W P, Yan L F, Wang B J, et al. Efficient catalysts for the green synthesis of adipic acid from biomass[J]. Angewandte Chemie-International Edition, 2021, 60(9): 4712-4719. |
8 | Wei L F, Zhang J X, Deng W P, et al. Catalytic transformation of 2,5-furandicarboxylic acid to adipic acid over niobic acid-supported Pt nanoparticles[J]. Chemical Communication, 2019, 55: 8013-8016. |
9 | Wang X, Bian W Y, Ma Y R, et al. Hydroxyl-terminated carbon dots for efficient conversion of cyclohexane to adipic acid[J]. Journal of Colloid and Interface Science, 2021, 591: 281-289. |
10 | Kuznetsov M L, Pombeiro A J L. Metal-free and iron (Ⅱ)-assisted oxidation of cyclohexane to adipic acid with ozone: a theoretical mechanistic study[J]. Journal of Catalysis, 2021, 399: 52-66. |
11 | Shahzeydi A, Ghiaci M, Farrokhpour H, et al. Facile and green synthesis of copper nanoparticles loaded on the amorphous carbon nitride for the oxidation of cyclohexane[J]. Chemical Engineering Journal, 2019, 370: 1310-1321. |
12 | Guo X K, Xu M X, She M Y, et al. Morphology reserved synthesis of discrete nanosheets of CuO@SAPO-34 and pore mouth catalysis for one-pot oxidation of cyclohexane[J]. Angewandte Chemie-International Edition, 2020, 59: 2606-2611. |
13 | Acharyya S S, Ghosh S, Bal R. Nanoclusters of Cu (Ⅱ) supported on nanocrystalline W (Ⅵ) oxide: a potential catalyst for single-step conversion of cyclohexane to adipic acid[J]. Green Chemistry, 2015,17(6): 3490-3499. |
14 | Hwang K C, Sagadevan A. One-pot room-temperature conversion of cyclohexane to adipic acid by ozone and UV light[J]. Science, 2014, 346(6216): 1495-1498. |
15 | Jian J, You K Y, Duan X Z, et al. Boosting one-step conversion of cyclohexane to adipic acid by NO2 and VPO composite catalysts[J]. Chemical Communication, 2016, 52(16): 3320-3323. |
16 | Jian J, You K Y, Luo Q, et al. Supported Ni-Al-VPO/MCM-41 as efficient and stable catalysts for highly selective one-step synthesis of adipic acid from cyclohexane with NO2 [J]. Industrial & Engineering Chemistry Research, 2016, 55(13): 3729-3735. |
17 | 刘瑞霞, 贺滨, 罗琛, 等. 钒磷氧复合氧化物及其在催化领域的应用[J].化工学报, 2018, 69(4): 1261-1275. |
Liu R X, He B, Luo C, et al. Vanadium phosphorous oxide and its catalytic application[J]. CIESC Journal, 2018, 69(4): 1261-1275. | |
18 | Taufiq-Yap Y H, Saw C S. Effect of different calcination environments on the vanadium phosphate catalysts for selective oxidation of propane and n-butane[J]. Catalysis Today, 2008, 131(1/2/3/4): 285-291. |
19 | Liu Y, Guo W L, Guo H S, et al. Cu(Ⅱ)-doped V2O5 mediated persulfate activation for heterogeneous catalytic degradation of benzotriazole in aqueous solution[J]. Separation and Purification Technology, 2020, 230: 115848. |
20 | Zeng H M, Liu D Y, Zhang Y C, et al. Nanostructure Mn-doped V2O5 cathode material fabricated from layered vanadium jarosite[J]. Chemistry of Material, 2015, 27(21): 7331-7336. |
21 | Borah P, Datta A. Exfoliated VOPO4·2H2O dispersed on alumina as a novel catalyst for the selective oxidation of cyclohexane[J]. Applied Catalysis A: General, 2010, 376(1/2): 19-24. |
22 | Xiao C Y, Chen X, Wang Z Y, et al. The novel and highly selective fumed silica-supported VPO for partial oxidation of n-butane to maleic anhydride[J]. Catalysis Today, 2004, 93/94/95: 223-228. |
23 | Li W J, Xiao Y, Guo S P, et al. Increasing maleic anhydride selectivity for n-butane oxidation by Y-modified VPO catalysts[J]. Fuel, 2023, 333: 126214. |
24 | Zhu Y J, Li J, Xie X F, et al. Effect of different VOPO4 phase catalysts on oxidative dehydrogenation of cyclohexane to cyclohexene in acetic acid[J]. Journal of Molecular Catalysis A: Chemical, 2006, 246: 185-189. |
25 | Feng R M, Yang X J, Ji W J, et al. VPO catalysts supported on H3PO4-treated ZrO2 highly active for n-butane oxidation[J]. Journal of Catalysis, 2007, 246: 166-176. |
26 | He B, Li Z H, Zhang H L, et al. Synthesis of vanadium phosphorus oxide catalysts assisted by deep-eutectic solvents for n-butane selective oxidation[J]. Industrial & Engineering Chemistry Research, 2019, 58(8): 2857-2867. |
27 | 黄继武,李周. 多晶材料X射线衍射:实验原理、方法与应用[M]. 北京:冶金工业出版社,2012: 97-108. |
Huang J W, Li Z. X-Ray Diffraction of Polycrystalline Materials: Experimental Principles, Methods and Applications[M]. Beijing: Metallurgical Industry Press, 2012: 97-108. | |
28 | Rajan N P, Rao G S, Pavankumar V, et al. Vapour phase dehydration of glycerol over VPO catalyst supported on zirconium phosphate[J]. Catalysis Science & Technology, 2014, 4(1): 81-92. |
29 | Cavani F, Ligi S, Monti T, et al. Relationship between structural/surface characteristics and reactivity in n-butane oxidation to maleic anhydride: the role of V3+ species[J]. Catalysis Today, 2000, 61(1/2/3/4): 203-210. |
30 | Abon M, Bere K E, Tuel A, et al. Evolution of a VPO catalyst in n-butane oxidation reaction during the activation time[J]. Journal of Catalysis, 1995, 156(1): 28-36. |
31 | Kleimenov E, Bluhm H, Hävecker M, et al. XPS investigations of VPO catalysts under reaction conditions[J]. Surface Science, 2005, 575(1/2): 181-188. |
32 | Yang D, Sararuk C, Suzuki K, et al. Effect of calcination temperature on the catalytic activity of VPO for aldol condensation of acetic acid and formalin[J]. Chemical Engineering Journal, 2016, 300: 160-168. |
33 | 徐淑媛, 李宁. 硝酸氧化醇酮生产己二酸反应机理和影响因素[J]. 工业催化, 2007, 15(10): 24-26. |
Xu S Y, Li N. Mechanism and influential factors for synthesis of adipic acid by oxidation of cyclohexanone/ol with nitric acid[J]. Industrial Catalysis, 2007, 15(10): 24-26. | |
34 | Pierini B T, Lombardo E A. Structure and properties of Cr promoted VPO catalysts[J]. Materials Chemistry and Physics, 2005, 92(1): 197-204. |
35 | Li X K, Ji W J, Zhao J, et al. Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15[J]. Journal of Catalysis, 2005, 236(2): 181-189. |
36 | Sakaguchi S, Nishiwaki Y, Kitamura T, et al. Efficient catalytic alkane nitration with NO2 under air assisted by N-hydroxyphthalimide[J]. Angewandte Chemie-International Edition, 2001, 40(1): 222-224. |
37 | Cook G K, Mayer J M. C—H bond activation by metal oxo species: oxidation of cyclohexane by chromyl chloride[J]. Journal of the American Chemical Society, 1994, 116(5): 1855-1868. |
[1] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[2] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[3] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[4] | Taoyan ZHAO, Jiangtao CAO, Ping LI, Lin FENG, Yu SHANG. Application of interval type-2 fuzzy immune PID controller to temperature control system for uncatalysed oxidation of cyclohexane [J]. CIESC Journal, 2022, 73(7): 3166-3173. |
[5] | YE Kai, LIU Xianghua, JIANG Yue, YU Ying, ZHAO Yafei, ZHUANG Ye, ZHENG Jinbao, CHEN Binghui. Combing low-temperature plasma with CeO2/13X for toluene degradation [J]. CIESC Journal, 2021, 72(7): 3706-3715. |
[6] | SUN Jing, DONG Yilin, LI Faqi, LI Wenxiang, MA Xiaoling, WANG Wenlong. Study on adsorption and catalytic oxidation characteristics of toluene on Co3O4 modified USY molecular sieve [J]. CIESC Journal, 2021, 72(6): 3306-3315. |
[7] | ZHANG Meijia, WU Dengfeng, XU Haoxiang, CHENG Daojian. Research progress of Pd-based catalysts for DSHP from hydrogen and oxygen [J]. CIESC Journal, 2021, 72(1): 292-303. |
[8] | Yiwei ZHAO, Fangyan JIANG, Chun LI, Dazhang DAI. Interfacial catalytic mechanism of Pseudomonas fluorescens phospholipase B [J]. CIESC Journal, 2020, 71(9): 4255-4259. |
[9] | Wenjun LIANG, Yuxue ZHU, Xiujuan SHI, Huipin SUN, Sida REN. Effect of Ce doping on catalytic chlorobenzene performance of Ru/TiO2 catalysts [J]. CIESC Journal, 2020, 71(8): 3585-3593. |
[10] | Erfu HUO, Yingchun LI, Shuai YANG, Ming FENG, Weiqin CHENG, Bonan WANG, Xinjun WEI. Study on separation process of dicyclohexyl ether by catalytic hydrogenation from cyclohexanol distillation residue [J]. CIESC Journal, 2020, 71(7): 3132-3139. |
[11] | Chaoxing KOU, Yang LIU, Aiwu ZENG. Liquid-liquid equilibria for quaternary systems polyoxymethylene dimethyl ethers + water + cyclohexane + sodium chloride [J]. CIESC Journal, 2020, 71(2): 507-515. |
[12] | Changyuan TAO, Xiuxiu WANG, Zuohua LIU, Renlong LIU, Jinhua LUAN. Research on leaching rate enhancement and organic matter removal in wet-process phosphoric acid [J]. CIESC Journal, 2020, 71(10): 4792-4799. |
[13] | Shuai HE, Feng GUO, Guojun KANG, Jian YU, Xuefeng REN, Guangwen XU. Preparation of palladium-based catalysts by complexing-solvothermal method and catalytic oxidation of m-xylene [J]. CIESC Journal, 2019, 70(3): 937-943. |
[14] | RUI Zebao, YANG Xiaoqing, CHEN Junfei, JI Hongbing. Photo-thermal synergistic catalysis for VOCs purification: current status and future perspectives [J]. CIESC Journal, 2018, 69(12): 4947-4958. |
[15] | LI Xidu, XIE Xinling, ZHANG Youquan, JU Quanliang. Cyclohexane assisting preparation of starch esterification in supercritical CO2 [J]. CIESC Journal, 2017, 68(6): 2526-2534. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 298
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 262
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||