CIESC Journal ›› 2020, Vol. 71 ›› Issue (S2): 1-11.DOI: 10.11949/0438-1157.20200550
• Reviews and monographs • Previous Articles Next Articles
Danyang SUN(),Tingting ZHAI,Hansheng LI,Wenfang LIU()
Received:
2020-05-09
Revised:
2020-06-03
Online:
2020-11-06
Published:
2020-11-06
Contact:
Wenfang LIU
通讯作者:
刘文芳
作者简介:
孙丹阳(1997—),女,硕士研究生,基金资助:
CLC Number:
Danyang SUN, Tingting ZHAI, Hansheng LI, Wenfang LIU. Research progress on modification strategy of g-C3N4 and g-C3N4/Ti3C2 heterojunction[J]. CIESC Journal, 2020, 71(S2): 1-11.
孙丹阳, 翟婷婷, 黎汉生, 刘文芳. g-C3N4的改性策略以及g-C3N4/Ti3C2异质结研究进展[J]. 化工学报, 2020, 71(S2): 1-11.
Add to citation manager EndNote|Ris|BibTeX
1 | 党聪哲, 李一兵, 赵旭. 石墨相氮化碳的制备及光催化降解罗丹明B[J]. 环境工程学报, 2018, 12(2): 427-433. |
Dang C Z, Li Y B, Zhao X. Preparation of graphite carbon nitride for photocatalytic degradation of RhB[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 427-433. | |
2 | Roger I, Shipman M A, Symes M D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting[J]. Nature Reviews Chemistry, 2017, 1(1): 0003. |
3 | 李伦, 宋金玲, 王宝英, 等. 石墨相氮化碳的研究进展[J]. 内蒙古科技大学学报, 2017, 36(4): 377-382. |
Li L, Song J L, Wang B Y, et al. Research progress in graphitic carbon nitride[J]. Journal of Inner Mongolia University of Science and Technology, 2017, 36(4): 377-382. | |
4 | Teter D M, Hemley R J. Low-compressibility carbon nitrides[J]. Science, 1996, 271(5245): 53-55. |
5 | 李佳宇, 李法云, 王艳杰, 等. 石墨相氮化碳及其改性对有机污染物的光催化降解[J]. 环境保护科学, 2018, 44(5): 56-62. |
Li J Y, Li F Y, Wang Y J, et al. Photocatalytic degradation of organic pollutants by graphite phase carbon nitride and its modification[J]. Environmental Protection Science, 2018, 44(5): 56-62. | |
6 | Sun J, Zhang J, Zhang M, et al. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles[J]. Nature Communications, 2012, 3(4): 1139. |
7 | Gillan E G. Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor[J]. Chemistry of Materials, 2000, 12(12): 3906-3912. |
8 | Shao M, Shao Y, Chai J, et al. Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production[J]. Journal of Materials Chemistry A, 2017, 5(32): 16748-16756. |
9 | Xu Q, Zhu B, Cheng B, et al. Photocatalytic H2 evolution on graphdiyne/g-C3N4 hybrid nanocomposites[J]. Applied Catalysis B-Environmental, 2019, 255: 117770. |
10 | Chen Y, Ji X, Vadivel S, et al. Anchoring carbon spheres on BiOBr/g-C3N4 matrix for high-performance visible light photocatalysis[J]. Ceramics International, 2018, 44(18): 23320-23323. |
11 | Xu Q, Cheng B, Yu J, et al. Making co-condensed amorphous carbon/g-C3N4 composites with improved visible-light photocatalytic H2 production performance using Pt as cocatalyst[J]. Carbon, 2017, 118: 241-249. |
12 | Wu X, Wang X, Wang F, et al. Soluble g-C3N4 nanosheets: facile synthesis and application in photocatalytic hydrogen evolution[J]. Applied Catalysis B-Environmental, 2019, 247: 70-77. |
13 | 郭继鹏, 王敬锋, 林琳, 等. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(S1): 1-7. |
Guo J P, Wang J F, Lin L, et al. Progress in preparation of g-C3N4 with different morphologies[J]. Materials Review, 2019, 33(S1): 1-7. | |
14 | Zhang K, Wang L, Sheng X, et al. Tunable bandgap energy and promotion of H2O2 oxidation for overall water splitting from carbon nitride nanowire bundles[J]. Advanced Energy Materials, 2016, 6(11): 150235211. |
15 | Li H, Qian D, Chen M. Template less infrared heating process for fabricating carbon nitride nanorods with efficient photocatalytic H2 evolution[J]. ACS Applied Materials & Interfaces, 2015, 7(45): 25162-25170. |
16 | Mo Z, Xu H, Chen Z, et al. Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy[J]. Applied Catalysis B-Environmental, 2018, 225: 154-161. |
17 | Takagaki A, Tagusagawa C, Hayashi S, et al. Nanosheets as highly active solid acid catalysts for green chemical syntheses[J]. Energy & Environmental Science, 2010, 3(1): 82-93. |
18 | Tong H, Ouyang S, Bi Y, et al. Nano-photocatalytic materials: possibilities and challenges[J]. Advanced Materials, 2012, 24(2): 229-251. |
19 | Xu J, Zhang L, Shi R, et al. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis[J]. Journal of Materials Chemistry A, 2013, 1(46): 14766-14772. |
20 | Yang S, Gong Y, Zhang J, et al. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light[J]. Advanced Materials, 2013, 25(17): 2452-2456. |
21 | 李荣荣, 王锐, 宫红, 等. 高比表面积g-C3N4的制备及其改性研究进展[J]. 化工新型材料, 2017, 45(1): 35-37. |
Li R R, Wang R, Gong H, et al. Research progress on the preparation and modification of high-surface-area graphitic carbon nitride[J]. New Chemical Materials, 2017, 45(1): 35-37. | |
22 | Zhang S, Li M, Qiu W, et al. Super small polymeric carbon nitride nanospheres with core-shell structure for photocatalysis[J]. Chemistryselect, 2017, 2(32): 10580-10585. |
23 | Shiraishi Y, Kofuji Y, Sakamoto H, et al. Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation[J]. ACS Catalysis, 2015, 5(5): 3058-3066. |
24 | 李俊怡, 梁峰, 田亮, 等. 类石墨相氮化碳纳米片的制备研究进展[J]. 化学通报, 2018, 81(5): 387-393. |
Li J Y, Liang F, Tian L, et al. Progress in preparation method of g-C3N4 nanosheets[J]. Chemistry, 2018, 81(5): 387-393. | |
25 | 马贺成, 刘建军, 于迎春, 等. 二维石墨相氮化碳纳米片的制备及其在光催化领域的研究进展[J]. 应用化学, 2019, 36(3): 259-268. |
Ma H C, Liu J J, Yu Y C, et al. Research progress in preparation and photocatalysis of two-dimensional graphitic carbon nitride nanosheets[J]. Chinese Journal of Applied Chemistry, 2019, 36(3): 259-268. | |
26 | 林江, 毛晓妍, 金成丽, 等. 改性g-C3N4在光催化领域的研究进展[J]. 化工科技, 2017, 25(5): 73-77. |
Lin J, Mao X Y, Jin C L, et al. Research progress of modified g-C3N4 on the photocatalyst[J]. Science & Technology in Chemical Industry, 2017, 25(5): 73-77. | |
27 | 汤梦瑶, 陆紫馨, 徐晨, 等. g-C3N4光催化剂的制备及改性研究进展[J]. 山东化工, 2019, 48(14): 78-80. |
Tang M Y, Lu Z X, Xu C, et al. Research progress on the preparation and modification of graphtic carbon nitride photocatalyst[J]. Shandong Chemical Industry, 2019, 48(14): 78-80. | |
28 | 蔡天凤, 徐誌谦, 魏文诗, 等. g-C3N4基催化剂光催化还原CO2的研究进展[J]. 精细石油化工, 2019, 36(3): 73-78. |
Cai T F, Xu Z Q, Wei W S, et al.Progress on photocatalytic reduction of CO2 by g-C3N4-based photocatalyst[J]. Speciality Petrochemicals, 2019, 36(3): 73-78. | |
29 | Jiang L, Yuan X, Pan Y, et al. Doping of graphitic carbon nitride for photocatalysis: a review[J]. Applied Catalysis B-Environmental, 2017, 217: 388-406. |
30 | 李欣蔚, 张会均, 文莉, 等. K掺杂C3N4的原位合成、禁带结构解析及其可见光催化性能增强机制[J]. 科学通报, 2016, 61(24): 2707-2716. |
Li X W, Zhang H J, Wen L, et al. In-situ synthesis of K-doped C3N4, analysis of forbidden band structure and enhancement mechanism of visible light catalytic performance[J]. Chinese Science Bulletin, 2016, 61(24): 2707-2716. | |
31 | Xiong T, Cen W, Zhang Y, et al. Bridging the g-C3N4 interlayers for enhanced photocatalysis[J]. ACS Catalysis, 2016, 6(4): 2462-2472. |
32 | Yue B, Li Q, Iwai H, et al. Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light[J]. Science and Technology of Advanced Materials, 2011, 12: 0344013. |
33 | Qiu P, Xu C, Chen H, et al. One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: role of oxygen on visible light photocatalytic activity[J]. Applied Catalysis B-Environmental, 2017, 206: 319-327. |
34 | Hong J, Xia X, Wang Y, et al. Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light[J]. Journal of Materials Chemistry, 2012, 22(30): 15006-15012. |
35 | Wen J, Xie J, Chen X, et al. A review on g-C3N4-based photocatalysts[J]. Applied Surfac Science, 2017, 391: 72-123. |
36 | Hu S, Ma L, You J, et al. A simple and efficient method to prepare a phosphorus modified g-C3N4 visible light photocatalyst[J]. RSC Advances, 2014, 4(41): 21657-21663. |
37 | Zhang J, Sun J, Maeda K, et al. Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis[J]. Energy & Environmental Science, 2011, 4(3): 675-678. |
38 | Yi J, El-Alami W, Song Y, et al. Emerging surface strategies on graphitic carbon nitride for solar driven water splitting[J]. Chemical Engineering Journal, 2020, 382: 122812. |
39 | 陶雪芬, 章颖, 郑杰锋, 等. 类石墨相氮化碳的复合研究进展[J]. 化工科技, 2019, 27(1): 71-76. |
Tao X F, Zhang Y, Zheng J F, et al. Research progress of graphit phase carbon nitride compound[J]. Science & Technology in Chemical Industry, 2019, 27(1): 71-76. | |
40 | 曹雪娟, 杨晓宇, 吴涛, 等. 新型非金属光催化剂石墨型氮化碳的研究进展[J]. 武汉理工大学学报, 2016, 38(9): 36-42. |
Cao X J, Yang X Y, Wu T, et al. Research progress in a new metal-free photocatalyst-graphite carbon nitride[J]. Journal of Wuhan University of Technology, 2016, 38(9): 36-42. | |
41 | 庞丹丹, 李洁冰, 宋忠贤, 等. g-C3N4光催化剂的改性优化研究进展[J]. 环境工程, 2019, 37(4): 104-111. |
Pang D D, Li J B, Song Z X, et al. Research progress in modification and optimization on g-C3N4 photo-catalyst[J]. Environmental Engineering, 2019, 37(4): 71-76. | |
42 | Fu Y, Huang T, Jia B, et al. Reduction of nitrophenols to aminophenols under concerted catalysis by Au/g-C3N4 contact system[J]. Applied Catalysis B-Environmental, 2017, 202: 430-437. |
43 | Ge L, Han C, Liu J, et al. Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles[J]. Applied Catalysis A-General, 2011, 409: 215-222. |
44 | Shiraishi Y, Kofuji Y, Kanazawa S, et al. Platinum nanoparticles strongly associated with graphitic carbon nitride as efficient co-catalysts for photocatalytic hydrogen evolution under visible light[J]. Chemical Communications (Cambridge, England), 2014, 50(96): 15255-15258. |
45 | Hao R, Wang G, Tang H, et al. Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity[J]. Applied Catalysis B-Environmental, 2016, 187: 47-58. |
46 | Xu Q, Zhu B, Jiang C, et al. Constructing 2D/2D Fe2O3/g-C3N4 direct Z-scheme photocatalysts with enhanced H2 generation performance[J]. Solar RRL, 2018, 2(3): 18000063. |
47 | Lu X, Jin Y, Zhang X, et al. Controllable synthesis of graphitic C3N4/ultrathin MoS2 nanosheet hybrid nanostructures with enhanced photocatalytic performance[J]. Dalton Transactions, 2016, 45(39): 15406-15414. |
48 | Zeng P, Ji X, Su Z, et al. WS2/g-C3N4 composite as an efficient heterojunction photocatalyst for biocatalyzed artificial photosynthesis[J]. RSC Advances, 2018, 8(37): 20557-20567. |
49 | 崔诗琦, 张秀芳, 王聪. 薄层g-C3N4/β-SnWO4异质结光催化剂的制备及性能[J]. 大连工业大学学报, 2018, 37(3): 179-182. |
Cui S Q, Zhang X F, Wang C. Preparation and properties of thin g-C3N4/β-SnWO4 heterojunction photocatalyst[J]. Journal of Dalian Polytechnic University, 2018, 37(3): 179-182. | |
50 | Akhundi A, Habibi-Yangjeh A. Graphitic carbon nitride nanosheets decorated with CuCr2O4 nanoparticles: novel photocatalysts with high performances in visible light degradation of water pollutants[J]. Journal of Colloid and Interface Science, 2017, 504: 697-710. |
51 | Fu J, Tian Y, Chang B, et al. BiOBr-carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism[J]. Journal of Materials Chemistry, 2012, 22(39): 21159-21166. |
52 | 崔玉民, 朱良俊, 肖依, 等. SiO2/g-C3N4复合光催化剂的制备及性能[J]. 环境污染与防治, 2016, 38(6): 111. |
Cui Y M, Zhu L J, Xiao Y, et al. Preparation and properties of SiO2/g-C3N4 composite photocatalyst[J]. Environmental Pollution & Control, 2016, 38(6): 111. | |
53 | 尹竞, 廖高祖, 朱冬韵, 等. g-C3N4/石墨烯复合材料的制备及光催化活性的研究[J]. 中国环境科学, 2016, 36(3): 735-740. |
Yin J, Liao G Z, Zhu D Y, et al. Preparation and photocatalytic activity of g-C3N4/rGO composite[J]. China Environmental Science, 2016, 36(3): 735-740. | |
54 | Tang Q, Zhou Z, Shen P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer[J]. Journal of the American Chemical Society, 2012, 134(40): 16909-16916. |
55 | Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253. |
56 | Yang S, Zhang P, Wang F, et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system[J]. Angewandte Chemie-International Edition, 2018, 57(47): 15491-15495. |
57 | Han M, Yin X, Li X, et al. Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes[J]. ACS Applied Materials & Interfaces, 2017, 9(23): 20038-20045. |
58 | Halim J, Lukatskaya M R, Cook K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chemistry of Materials, 2014, 26(7): 2374-2381. |
59 | Zhang X, Zhao X, Wu D, et al. High and anisotropic carrier mobility in experimentally possible Ti2CO2 (MXene) monolayers and nanoribbons[J]. Nanoscale, 2015, 7(38): 16020-16025. |
60 | Borysiuk V N, Mochalin V N, Gogotsi Y. Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Tin+1Cn (MXenes)[J]. Nanotechnology, 2015, 26(26): 265705. |
61 | Zha X, Yin J, Zhou Y, et al. Intrinsic structural, electrical, thermal, and mechanical properties of the promising conductor Mo2C MXene[J]. Journal of Physical Chemistry C, 2016, 120(28): 15082-15088. |
62 | Fan Y, Chen D, Liu X, et al. Improving the hydrogen storage performance of lithium borohydride by Ti3C2 MXene[J]. International Journal of Hydrogen Energy, 2019, 26(26): 265705. |
63 | Xu Y, Wang S, Yang J, et al. In-situ grown nanocrystal TiO2 on 2D Ti3C2 nanosheets for artificial photosynthesis of chemical fuels[J]. Nano Energy, 2018, 51: 442-450. |
64 | Xiao R, Zhao C, Zou Z, et al. In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet schottky heterojunction toward enhanced photocatalytic hydrogen evolution[J]. Applied Catalysis B-Environmental, 2020, 268: 118382. |
65 | Cheng L, Chen Q, Li J, et al. Boosting the photocatalytic activity of CdLa2S4 for hydrogen production using Ti3C2 MXene as a co-catalyst[J]. Applied Catalysis B-Environmental, 2020, 267: 118379. |
66 | Wang H, Wu Y, Yuan X, et al. Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges[J]. Advanced Materials, 2018, 30(12): 170456112. |
67 | Xu H, Ren A, Wu J, et al. Recent advances in 2D MXenes for photodetection[J]. Advanced Functional Materials, 2020, 30(24): 2000907. |
68 | Chen H, Chen S, Quan X, et al. Fabrication of TiO2-Pt coaxial nanotube array schottky structures for enhanced photocatalytic degradation of phenol in aqueous solution[J]. Journal of Physical Chemistry C, 2008, 112(25): 9285-9290. |
69 | Wang L, Zheng X, Chen L, et al. van der Waals heterostructures comprised of ultrathin polymer nanosheets for efficient Z-scheme overall water splitting[J]. Angewandte Chemie-International Edition, 2018, 57(13): 3454-3458. |
70 | Low J, Cao S, Yu J, et al. Two-dimensional layered composite photocatalysts[J]. Chemical Communications, 2014, 50(74): 10768-10777. |
71 | Ran J, Guo W, Wang H, et al. Metal-free 2D/2D phosphorene/g-C3N4 van der Waals heterojunction for highly enhanced visible-light photocatalytic H2 production[J]. Advanced Materials, 2018, 30(25): 180012825. |
72 | Su T, Hood Z D, Naguib M, et al. 2D/2D heterojunction of Ti3C2/g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution[J]. Nanoscale, 2019, 11(17): 8138-8149. |
73 | Liu N, Lu N, Su Y, et al. Fabrication of g-C3N4/Ti3C2 composite and its visible-light photocatalytic capability for ciprofloxacin degradation[J]. Separation and Purification Technology, 2019, 211: 782-789. |
74 | Liu N, Lu N, Yu H, et al. Efficient day-night photocatalysis performance of 2D/2D Ti3C2/porous g-C3N4 nanolayers composite and its application in the degradation of organic pollutants[J]. Chemosphere, 2020, 246: 125760. |
75 | Ren C E, Hatzell K B, Alhabeb M, et al. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes[J]. Journal of Physical Chemistry Letters, 2015, 6(20): 4026-4031. |
76 | Chen X, Sun X, Xu W, et al. Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor[J]. Nanoscale, 2018, 10(3): 1111-1118. |
77 | Li Y, Ding L, Guo Y, et al. Boosting the photocatalytic ability of g-C3N4 for hydrogen production by Ti3C2 MXene quantum dots[J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41440-41447. |
78 | Su T, Shao Q, Qin Z, et al. Role of interfaces in two-dimensional photocatalyst for water splitting[J]. ACS Catalysis, 2018, 8(3): 2253-2276. |
79 | Ghidiu M, Kota S, Drozd V, et al. Pressure-induced shear and interlayer expansion in Ti3C2 MXene in the presence of water[J]. Science Advances, 2018, 4(1): 6850. |
80 | Yang Y, Zeng Z, Zeng G, et al. Ti3C2 Mxene/porous g-C3N4 interfacial schottky junction for boosting spatial charge separation in photocatalytic H2O2 production[J]. Applied Catalysis B-Environmental, 2019, 258: 117956. |
81 | Yang C, Tan Q, Li Q, et al. 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: dual effects of urea[J]. Applied Catalysis B-Environmental, 2020, 268: 118738. |
[1] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[2] | Erqi WANG, Shuzhou PENG, Zhen YANG, Yuanyuan DUAN. Evaluation of vapor-liquid equilibrium models for mixtures containing HFOs [J]. CIESC Journal, 2023, 74(8): 3216-3225. |
[3] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[4] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[5] | Lixiang ZHU, Moye LUO, Xiaodong ZHANG, Tao LONG, Ran YU. Application of quinone profile method to indicate structure and activity of functional microbial community in trichloroethylene-contaminated soil [J]. CIESC Journal, 2023, 74(6): 2647-2654. |
[6] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[7] | Yuntong GE, Wei WANG, Kai LI, Fan XIAO, Zhipeng YU, Jing GONG. AFM study of the interaction forces between micro-oil droplets and modified silica surfaces in multiphase dispersion systems [J]. CIESC Journal, 2023, 74(4): 1651-1659. |
[8] | Feng WANG, Yu CHEN, Hongyan PEI, Dongdong LIU, Jing ZHANG, Lixin ZHANG. Design, synthesis and anti-fungal activity of 1,2,4-oxadiazole derivatives [J]. CIESC Journal, 2023, 74(3): 1390-1398. |
[9] | Qian WANG, Shenyong LI, Shuai KANG, Wei PANG, Longlong HAO, Shenjun QIN. Research progress of pretreatment technology for efficient utilization of coal ash [J]. CIESC Journal, 2023, 74(3): 1010-1032. |
[10] | Na ZHANG, Helin PAN, Bo NIU, Yayun ZHANG, Donghui LONG. Density functional theory study on thermal cracking reaction mechanism of phenolic resin [J]. CIESC Journal, 2023, 74(2): 843-860. |
[11] | Jin CAI, Xiaohui WANG, Han TANG, Guangjin CHEN, Changyu SUN. Prediction of the phase equilibrium of semi-clathrate hydrate in TBAB aqueous solution [J]. CIESC Journal, 2023, 74(1): 408-415. |
[12] | Jie GUO, Fan ZHANG, Shiyu XIE, Lixin YOU, Yaguang SUN. NHC-Pd functionalized coordination polymer (NHC-Pd@Zn-L): synthesis, characterization and catalytic performance in Suzuki-Miyaura cross-coupling reaction [J]. CIESC Journal, 2022, 73(8): 3608-3614. |
[13] | Hongxin YANG, Xingya LI, Liang GE, Tongwen XU. Preparation of mono-/divalent anion permselective membranes with piperidinium-type long side-chain [J]. CIESC Journal, 2022, 73(8): 3739-3748. |
[14] | Gang WANG, Zhihao XIA, Xiyan LI, Hong ZHANG, Zhennan HAN, Xingfei SONG, Guangwen XU. Effect of atmosphere on active performance of light-burned magnesium oxides from calcined magnesite in fluidized bed [J]. CIESC Journal, 2022, 73(8): 3699-3707. |
[15] | Xinzhe ZHANG, Wentao SUN, Bo LYU, Chun LI. Oxidative modification of plant natural products and microbial manufacturing [J]. CIESC Journal, 2022, 73(7): 2790-2805. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||