CIESC Journal ›› 2020, Vol. 71 ›› Issue (12): 5636-5643.DOI: 10.11949/0438-1157.20200623
• Separation engineering • Previous Articles Next Articles
HE Yawei1,2(),ZHANG Songhong2,HUANG Jie2,LIU Liu2,LI Guohua2,YUN Junxian2()
Received:
2020-05-21
Revised:
2020-07-07
Online:
2020-12-05
Published:
2020-12-05
Contact:
YUN Junxian
贺亚维1,2(),张颂红2,黄杰2,刘流2,李国华2,贠军贤2()
通讯作者:
贠军贤
作者简介:
贺亚维(1973—),女,硕士,副教授,基金资助:
CLC Number:
HE Yawei,ZHANG Songhong,HUANG Jie,LIU Liu,LI Guohua,YUN Junxian. Separation of phenyllactic acid from transformation broth by anion exchange poly(2-hydroxyethyl methacrylate) composite cryogel embedded with nanogels[J]. CIESC Journal, 2020, 71(12): 5636-5643.
贺亚维,张颂红,黄杰,刘流,李国华,贠军贤. 内嵌纳凝胶阴离子交换聚甲基丙烯酸羟乙酯复合晶胶分离苯乳酸研究[J]. 化工学报, 2020, 71(12): 5636-5643.
Add to citation manager EndNote|Ris|BibTeX
Mass ratios of HEMA to pBMA nanogels | The effective porosity/% | The absolute porosity /% |
---|---|---|
9:1 | 82.5 | 88.0 |
8:2 | 81.2 | 88.8 |
7:3 | 79.5 | 84.9 |
Table 1 The porosities of nano-cryogels
Mass ratios of HEMA to pBMA nanogels | The effective porosity/% | The absolute porosity /% |
---|---|---|
9:1 | 82.5 | 88.0 |
8:2 | 81.2 | 88.8 |
7:3 | 79.5 | 84.9 |
Mass ratios of HEMA to pBMA nanogels | L/cm | kw×1012/m2 |
---|---|---|
9:1 | 5.0 | 1.77 |
8:2 | 4.7 | 1.26 |
7:3 | 5.2 | 0.35 |
Table 2 Permeability and length of the composite cryogel matrix with different mass ratios of HEMA to pBMA nanogels (column inner diameter: 10 mm)
Mass ratios of HEMA to pBMA nanogels | L/cm | kw×1012/m2 |
---|---|---|
9:1 | 5.0 | 1.77 |
8:2 | 4.7 | 1.26 |
7:3 | 5.2 | 0.35 |
1 | Dieuleveux V, van der Pyl D, Chataud J, et al. Purification and characterization of anti-Listeria compounds produced by Geotrichum candidum[J]. Applied Environmental Microbiology, 1998, 64(2): 800-803. |
2 | Schwenninger S M, Lacroix C, Truttmann S, et al. Characterization of low-molecular-weight antiyeast metabolites produced by a food-protective Lactobacillus-Propionibacterium coculture[J]. Journal of Food Protection, 2008, 71(12): 2481-2487. |
3 | Prema P, Smila D, Palavesam A, et al. Production and characterization of an antifungal compound (3-phenyllactic acid) produced by Lactobacillus plantarum strain[J]. Food and Bioprocess Technology, 2010, 3(3): 379-386. |
4 | Mu W M, Yu S H, Zhu L J, et al. Recent research on 3-phenyllactic acid, a broad-spectrum antimicrobial compound[J]. Applied Microbiology Biotechnology, 2012, 95(5): 1155-1163. |
5 | Li L, Shin S Y, Lee K W, et al. Production of natural antimicrobial compound D-phenyllactic acid using Leuconostoc mesenteroides ATCC8293 whole cells involving highly active D-lactate dehydrogenase[J]. Letters Applied Microbiology, 2014, 59(4): 404-411. |
6 | Ning Y W, Yan A H, Yang K, et al. Antibacterial activity of phenyllactic acid against Listeria monocytogenes and Escherichia coli by dual mechanisms[J]. Food Chemistry, 2017, 228: 533-540. |
7 | Fujita T, Nguyen H D, Ito T, et al. Microbial monomers custom-synthesized to build true bio-derived aromatic polymers[J]. Applied Microbiology and Biotechnology, 2013, 97(20): 8887-8894. |
8 | Valerio F, Di Blase M, Lattanzio V M, et al. Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of PLA[J]. International Journal of Food Microbiology, 2016, 222: 1-7. |
9 | 朱银龙, 贠军贤, 沈绍传, 等. 透性化干酪乳杆菌细胞转化苯丙酮酸合成苯乳酸[J]. 高校化学工程学报, 2015, 29(2): 495-500. |
Zhu Y L, Yun J X, Shen S C, et al. Biotransformation of phenylpyruvic acid into phenyllactic acid with permeabilized Lactobacillus casei cells [J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(2): 495-500. | |
10 | Rodríguez N, Salgado J M, Cortés S, et al. Antimicrobial activity of D-3-phenyllactic acid produced by fed-batch process against Salmonella enteric[J]. Food Control, 2012, 25(1): 274-284. |
11 | Li X F, Jiang B, Pan B L. Biotransformation of phenylpyruvic acid to phenyllactic acid by growing and resting cells of a Lactobacillus sp[J]. Biotechnology Letters, 2007, 29(4): 593-597. |
12 | 倪正, 关今韬, 沈绍传, 等. 苯乳酸的微生物合成及分离研究进展[J]. 化工进展, 2016, 35(11): 3627-3633. |
Ni Z, Guan J T, Shen S C. An overview of recent advances in microbial synthesis and separation of phenyllactic acid[J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3627-3633. | |
13 | Gizem E, Bo M. Cryogels-versatile tools in bioseparation[J]. Journal of Chromatography A, 2014, 1357(8): 24-35. |
14 | Lozinsky V I, Galaev I Y, Plieva F M, et al. Polymeric cryogels as promising materials of biotechnological interest[J]. Trends in Biotechnology, 2003, 21(10): 445-451. |
15 | Plieva F M , Galaev I Y, Mattlasson B. Macroporous gels prepared at subzero temperatures as novel materials for chromatography of particulate-containing fluids and cell culture applications[J]. Journal of Separation Science, 2007, 30(11): 1657-1671. |
16 | Plieva F M, Kirsebom H, Mattlasson B. Preparation of macroporous cryostructurated gel monoliths, their characterization and main applications[J]. Journal of Separation Science, 2011, 34(16/17): 2164-2172. |
17 | Yao K J, Shen S C, Yun J X, et al. Preparation of polyacrylamide-based supermacroporous monolithic cryogelbeds under freezing-temperature variation conditions[J]. Chemical Engineering Science, 2006, 61(20): 6701-6708. |
18 | Hanora A, Plieva F M, Hedström M, et al. Capture of bacterial endotoxins using a supermacroporous monolithic matrix with immobilized polyethyleneimine, lysozyme or polymyxin B[J]. Journal of Biotechnology, 2005, 118(4): 421-433. |
19 | Arvidsson P, Pleeva F M, Lozinsky V I, et al. Direct chromatographic capture of enzyme from crude homogenate using immobilized metal affinity chromatography on a continuous supermacroporous adsorbent[J]. Journal of Chromatography A, 2003, 986(2): 275-290. |
20 | Arvidsson P, Pleeva F M, Savina I N, et al. Chromatography of microbial cells using continuous supermacroporous affinity and ion-exchange columns[J]. Journal of Chromatography A, 2002, 977(1): 27-38. |
21 | Tekin K, Uzun L, Şahin Ç, et al. Preparation and characterization of composite cryogels containing imidazole group and use in heavy metal removal[J]. Reactive and Functional Polymers, 2011, 71(10): 985-993. |
22 | Yao K J, Yun J X, Shen S C, et al. Characterization of a novel continuous supermacroporous monolithic cryogel embedded with nanoparticles for protein chromatography[J]. Journal of Chromatography A, 2006, 1109(1): 103-110. |
23 | Bruve L J, Chase H A. Hydrodynamics and adsorption behavior within an expanded bed adsorption column studied using in-bed sampling[J]. Chemical Engineering Science, 2011, 56(10): 3149-3162. |
24 | Uygun M, Akduman B, Akgöl S, et al. A new metal-chelated cryogel for reversible immobilization of urease[J]. Applied Biochemistry and Biotechnology, 2013, 170(8): 1815-1826. |
25 | Savina I N, Galaev I Y, Mattiasson B.Anion-exchange supermacroporous monolithic matrices with grafted polymer brushes of N, N-dimethylaminoethyl-methacrylate[J]. Journal of Chromatography A, 2005, 1092(2): 199-205. |
26 | Yun J X, Cheng X H, Ye J L, et al. Chromatographic adsorption of serum albumin and antibody proteins in cryogels with benzyl-quaternary amine ligands[J]. Journal of Chromatography A, 2015, 1381: 173-183. |
27 | Ye J L, Yun J X, Lin D Q, et al. Poly(hydroxyethyl methacrylate)-based composite cryogel with embedded macroporous cellulose beads for the separation of human serum immunoglobulin and albumin[J]. Journal of Separation Science, 2013, 36: 3813-3820. |
28 | Pan M, Shen S, Chen L, et al. Separation of lactoperoxidase from bovine whey milk by cation exchange composite cryogel embedded macroporous cellulose beads[J]. Separation & Purification Technology, 2015, 147: 132-138. |
29 | Kangkamano T, Numnuam A, Limbut W, et al. Chitosan cryogel with embedded gold nanoparticles decorated multiwalled carbon nanotubes modified electrode for highly sensitive flow based non-enzymatic glucose sensor[J]. Sensors & Actuators B Chemical, 2017, 246: 854-863. |
30 | Tao S P, Wang C, Sun Y. Coating of nanoparticles on cryogel surface and subsequent double-modification for enhanced ion-exchange capacity of protein[J]. Journal of Chromatography A, 2014, 1359: 76-83. |
31 | Alkan H, Cömert Ş C, Gürbüz F, et al. Cu2+-attached pumice particles embedded composite cryogels for protein purification[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2017, 45(1): 90-97. |
32 | Wang C, Dong X Y, Jiang Z, et al. Enhanced adsorption capacity of cryogel bed by incorporating polymeric resin particles[J]. Journal of Chromatography A, 2013, 1272 (11): 20-25. |
33 | 刘杰, 沈绍传, 陈平, 等. 内嵌纳米粒阴离子交换聚甲基丙烯酸羟乙酯复合晶胶分离三磷酸胞苷[J]. 化工学报, 2014, 65(10): 3938-3945. |
Liu J, Shen S C, Chen P, et al. Separation of cytidine triphosphate from Saccharomyces cerevisiae broth by anion exchange poly(2-hydroxyethyl methacrylate) composite cryogel embedded with SiO2 nanoparticles[J]. CIESC Journal, 2014, 65(10): 3938-3945. | |
34 | Ma Y K, Ge Y X, Li L B. Advancement of multifunctional hybrid nanogel systems: construction and application in drug co-delivery and imaging technique[J]. Materials Science and Engineering C, 2017, 71(2): 1281-1292. |
35 | Oh J K, Lee D I, Park J M. Biopolymer-based microgels/nanogels for drug delivery applications[J]. Progress in Polymer Science, 2009, 34 (8): 1261-1282. |
36 | Oh J K, Drumright R, Siegwart D J, et al. The development of microgels/nanogels for drug delivery applications[J]. Progress in Polymer Science, 2008, 33(4): 448-477. |
37 | Sasaki Y, Akiyoshi K. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications[J]. Chemical Record, 2010, 10(6): 366-376. |
38 | Soni G, Yadav K S. Nanogels as potential nanomedicine carrier for treatment of cancer: a mini review of the state of the art[J]. Saudi Pharmaceutical Journal, 2016, 24(2): 133-139. |
39 | Wu H Q, Wang C C. Biodegradable smart nanogels: a new platform for targeting drug delivery and biomedical diagnostics[J]. Langmuir, 2016, 32(25): 6211-6225. |
40 | Branniguan R P, Khutoryanskiyv V. Synthesis and evaluation of mucoadhesive acryloyl-quaternized PDMAEMA nanogels for ocular drug delivery[J]. Colloids and Surfaces B: Biointerfaces, 2017, 155: 538-543. |
41 | Ahmed I N, Chang R, Tsai W B. Poly(acrylic acid) nanogel as a substrate for cellulase immobilization for hydrolysis of cellulose[J]. Colloids and Surfaces B: Biointerfaces, 2017, 152: 339-343. |
42 | Guan J T, Guan Y X, Yun J X, et al. Chromatographic separation of phenyllactic acid from crude broth using cryogels with dual functional groups[J]. Journal of Chromatography A, 2018, 1554(11): 92-100. |
[1] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[2] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[3] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[4] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[5] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[6] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[7] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[8] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[9] | Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger [J]. CIESC Journal, 2023, 74(3): 1352-1359. |
[10] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[11] | Xiaowan PENG, Xiaonan GUO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Modeling and simulation of CH4/N2 separation process with two absorption-adsorption columns using ZIF-8 slurry [J]. CIESC Journal, 2023, 74(2): 784-795. |
[12] | Jinlin MENG, Yu WANG, Qunfeng ZHANG, Guanghua YE, Xinggui ZHOU. Pore network model of low-temperature nitrogen adsorption-desorption in mesoporous materials [J]. CIESC Journal, 2023, 74(2): 893-903. |
[13] |
Wan XU, Zhenbin CHEN, Huijuan ZHANG, Fangfang NIU, Ting HUO, Xingsheng LIU.
Study on synthesis, adsorption and desorption performance of linear temperature-sensitive segment polymer regulated intelligent |
[14] | Jiahao JIANG, Xiaole HUANG, Jiyun REN, Zhengrong ZHU, Lei DENG, Defu CHE. Qualitative and quantitative study on Pb2+ adsorption by biochar in solution [J]. CIESC Journal, 2023, 74(2): 830-842. |
[15] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||