CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4445-4461.DOI: 10.11949/0438-1157.20200739
• Reviews and monographs • Previous Articles Next Articles
Xingqun ZHENG(),Li LI(),Zidong WEI()
Received:
2020-06-11
Revised:
2020-07-14
Online:
2020-10-05
Published:
2020-10-05
Contact:
Zidong WEI
通讯作者:
魏子栋
作者简介:
郑星群(1993—),女,博士研究生,基金资助:
CLC Number:
Xingqun ZHENG, Li LI, Zidong WEI. Constructing and regulating electrocatalysts: from perspective of mesoscale[J]. CIESC Journal, 2020, 71(10): 4445-4461.
郑星群, 李莉, 魏子栋. 介尺度视角下的电催化剂调控策略[J]. 化工学报, 2020, 71(10): 4445-4461.
Add to citation manager EndNote|Ris|BibTeX
1 | Chen J, Wang F, Qi X, et al. A simple strategy to construct cobalt oxide-based high-efficiency electrocatalysts with oxygen vacancies and heterojunctions[J]. Electrochimica Acta, 2019, 3326(5):134979-134986. |
2 | Dou S, Wang X, Wang S Y. Rational design of transition metal-based materials for highly efficient electrocatalysis[J]. Small Methods, 2019, 3(1): 1800211-1800228. |
3 | Gao Q, Zhang W, Shi Z, et al. Structural design and electronic modulation of transition-metal-carbide electrocatalysts toward efficient hydrogen evolution[J]. Adv. Mater., 2019, 31(2): e1802880. |
4 | Hu Q, Li G, Han Z, et al. Nonmetal doping as a robust route for boosting the hydrogen evolution of metal-based electrocatalysts[J]. Chem. Eur. J., 2020, 26(18): 3930-3942. |
5 | Zhao Z J, Liu S H, Zha S J, et al. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors[J]. Nature Reviews Materials, 2019, 4(12): 792-804. |
6 | Kusada K, Kobayashi H, Yamamoto T, et al. Discovery of face-centered-cubic ruthenium nanoparticles: facile size-controlled synthesis using the chemical reduction method[J]. J. Am. Chem. Soc., 2013, 135(15): 5493-5496. |
7 | Wang C, Wang Y, Yang H, et al. Revealing the role of electrocatalyst crystal structure on oxygen evolution reaction with nickel as an example[J]. Small, 2018, 14(40): 1802895-1802902. |
8 | Wang C, Yang H, Zhang Y, et al. NiFe alloy nanoparticles with hcp crystal structure stimulate superior oxygen evolution reaction electrocatalytic activity[J]. Angew. Chem. Int. Ed. Engl., 2019, 58(18): 6099-6103. |
9 | Tong W, Huang B, Wang P, et al. Crystal-phase-engineered PdCu electrocatalyst for enhanced ammonia synthesis[J]. Angew. Chem. Int. Ed. Engl., 2020, 59(7): 2649-2653. |
10 | Meng Y, Song W, Huang H, et al. Structure–property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media[J]. J. Am. Chem. Soc., 2014, 136(32): 11452-11464. |
11 | Yang W, Su Z A, Xu Z, et al. Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: oxygen vacancies and reaction intermediates[J]. Appl. Catal. B, 2020, 260: 118150. |
12 | Chen P, Xu K, Tao S, et al. Phase-transformation engineering in cobalt diselenide realizing enhanced catalytic activity for hydrogen evolution in an alkaline medium[J]. Adv. Mater., 2016, 28(34): 7527-7532. |
13 | Strickler A L, Higgins D, Jaramillo T F. Crystalline strontium iridate particle catalysts for enhanced oxygen evolution in acid[J]. ACS Appl. Energy Mater., 2019, 2(8): 5490-5498. |
14 | Zhao Q, Yan Z, Chen C, et al. Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond[J]. Chem. Rev., 2017, 117(15): 10121-10211. |
15 | Wu G, Wang J, Ding W, et al. A strategy to promote the electrocatalytic activity of spinels for oxygen reduction by structure reversal[J]. Angew. Chem. Int. Ed. Engl., 2016, 55(4): 1340-1344. |
16 | 杨娜, 王俊, 吴光平, 等. 尖晶石结构反转提高氧还原催化活性的密度泛函研究[J]. 中国科学 : 化学, 2017, 47(7): 882-890. |
Yang N, Wang J, Wu G P, et al. Density functional theoretical study on the effect of spinel structure reversal on the catalytic activity for oxygen reduction reaction[J]. Scientia Sinica Chimica, 2017, 47(7): 882-890 | |
17 | Gong Y, Ding W, Li Z, et al. Inverse spinel cobalt-iron oxide and N-doped graphene composite as an efficient and durable bifuctional catalyst for Li-O2 batteries[J]. ACS Catal., 2018, 8(5): 4082-4090. |
18 | Cheng F, Shen J, Peng B, et al. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts[J]. Nat. Chem., 2011, 3(1): 79-84. |
19 | Cheng F, Zhang T, Zhang Y, et al. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies[J]. Angew. Chem. Int. Ed. Engl., 2013, 52(9): 2474-2477. |
20 | Zhang T, Cheng F, Du J, et al. Efficiently enhancing oxygen reduction electrocatalytic activity of MnO2 using facile hydrogenation[J]. Adv. Energy Mater., 2015, 5(1): 1400654. |
21 | Wei Z D, Huang W Z, Zhang S T, et al. Induced effect of Mn3O4 on formation of MnO2 crystals favourable to catalysis of oxygen reduction[J]. J. Appl. Electrochem., 2000, 30(10): 1133-1136. |
22 | Wei Z D, Huang W Z, Zhang S T, et al. Carbon-based air electrodes carrying MnO2 in zinc-air batteries[J]. J. Power Sources, 2000, 91(2): 83-85. |
23 | Li L, Feng X H, Nie Y, et al. Insight into the effect of oxygen vacancy concentration on the catalytic performance of MnO2[J]. ACS Catal., 2015, 5(8): 4825-4832. |
24 | Jiang M, Fu C, Yang J, et al. Defect-engineered MnO2 enhancing oxygen reduction reaction for high performance Al-air batteries[J]. Energy Sto. Mater., 2019, 18: 34-42. |
25 | Peng S, Han X, Li L, et al. Electronic and defective engineering of electrospun CaMnO3 nanotubes for enhanced oxygen electrocatalysis in rechargeable zinc-air batteries[J]. Adv. Ener. Mater., 2018, 8(22): 1800612. |
26 | Hu C, Wang X, Yao T, et al. Enhanced electrocatalytic oxygen evolution activity by tuning both the oxygen vacancy and orbital occupancy of B‐site metal cation in NdNiO3[J]. Adv. Funct. Mater., 2019, 29(30): 1902449. |
27 | Li K, Zhang R, Gao R, et al. Metal-defected spinel MnxCo3-xO4 with octahedral Mn-enriched surface for highly efficient oxygen reduction reaction[J]. Appl. Cataly. B, 2019, 244: 536-545. |
28 | Yan L, Lin Y, Yu X, et al. La0.8Sr0.2MnO3-based perovskite nanoparticles with the A-site deficiency as high performance bifunctional oxygen catalyst in alkaline solution[J]. ACS Appl. Mater. Interfaces, 2017, 9(28): 23820-23827. |
29 | Li C, Han X, Cheng F, et al. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis[J]. Nat. Commun., 2015, 6: 7345-7352. |
30 | Xu X, Li L, Huang J, et al. Engineering Ni3+ cations in NiO lattice at the atomic level by Li+ doping: the roles of Ni3+ and oxygen species for CO oxidation[J]. ACS Catal., 2018, 8(9): 8033-8045. |
31 | Zhou W, Cao X, Zeng Z, et al. One-step synthesis of Ni3S2 nanorod@ Ni(OH)2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors[J]. Ener. Envir. Sci., 2013, 6(7): 2216-2221. |
32 | Enman L J, Burke M S, Batchellor A S, et al. Effects of intentionally incorporated metal cations on the oxygen evolution electrocatalytic activity of nickel (oxy) hydroxide in alkaline media[J]. ACS Catal., 2016, 6(4): 2416-2423. |
33 | Peng L S, Wang J, Nie Y, et al. Dual-ligand synergistic modulation: a satisfactory strategy for simultaneously improving the activity and stability of oxygen evolution electrocatalysts[J]. ACS Catal., 2017, 7(12): 8184-8191. |
34 | Lai Z, Chaturvedi A, Wang Y, et al. Preparation of 1T'-phase ReS2xSe2(1-x) ( x = 0-1) nanodots for highly efficient electrocatalytic hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2018, 140(27): 8563-8568. |
35 | Najam T, Shah S S A, Ding W, et al. An efficient anti-poisoning catalyst against SOx, NOx, and POx: P, N-doped carbon for oxygen reduction in acidic media[J]. Angew. Chem. Int. Ed. Engl., 2018, 57(46): 15101-15106. |
36 | Xiang R, Peng L, Wei Z. Tuning interfacial structures for better catalysis of water electrolysis[J]. Chem. Eur. J., 2019, 25(42): 9799-9815. |
37 | Xie X H, Song M, Wang L G, et al. Electrocatalytic hydrogen evolution in neutral pH solutions: dual-phase synergy[J]. ACS Catal., 2019, 9(9): 8712-8718. |
38 | Yang L, Liu R M, Jiao L F. Electronic redistribution: construction and modulation of interface engineering on CoP for enhancing overall water splitting[J]. Adv. Funct. Mater., 2020, 30(14): 1909618. |
39 | Xiang R, Duan Y, Peng L, et al. Three-dimensional core@shell Co@CoMoO4 nanowire arrays as efficient alkaline hydrogen evolution electro-catalysts[J]. Appl. Catal. B, 2019, 246: 41-49. |
40 | Yu Z Y, Duan Y, Gao M R, et al. A one-dimensional porous carbon-supported Ni/Mo2C dual catalyst for efficient water splitting[J]. Chem. Sci., 2017, 8(2): 968-973. |
41 | Ometto F B, Carbonio E A, Teixeira-Neto E, et al. Changes induced by transition metal oxides in Pt nanoparticles unveil the effects of electronic properties on oxygen reduction activity[J]. J. Mater. Chem. A, 2019, 7(5): 2075-2086. |
42 | Wang Y, Liu S, Pei C, et al. Modulating the surface defects of titanium oxides and consequent reactivity of Pt catalysts[J]. Chem. Sci., 2019, 10(45): 10531-10536. |
43 | Liu Z, Li Z, Li J, et al. Engineering of Ru/Ru2P interfaces superior to Pt active sites for catalysis of the alkaline hydrogen evolution reaction[J]. J. Mater. Chem. A, 2019, 7(10): 5621-5625. |
44 | Wang J, Mao S, Liu Z, et al. Dominating role of Ni0 on the interface of Ni/NiO for enhanced hydrogen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2017, 9(8): 7139-7147. |
45 | Peng L S, Zheng X Q, Li L, et al. Chimney effect of the interface in metal oxide/metal composite catalysts on the hydrogen evolution reaction[J]. Appl. Cataly. B, 2019, 245: 122-129. |
46 | Zhao L, Zhang Y, Zhao Z, et al. Steering elementary steps towards efficient alkaline hydrogen evolution via size-dependent Ni/NiO nanoscale heterosurfaces[J]. Nat. Sci. Rev., 2019, 7(1): 27-36. |
47 | Jiang J, Tao S, He Q, et al. Interphase-oxidized ruthenium metal with half-filled d-orbitals for hydrogen oxidation in an alkaline solution[J]. J. Mater. Chem. A, 2020, 8(20): 10168-10174. |
48 | Yang Y, Sun X, Han G, et al. Enhanced electrocatalytic hydrogen oxidation on Ni/NiO/C derived from a nickel-based metal-organic framework[J]. Angew. Chem. Int. Ed. Engl., 2019, 58(31): 10644-10649. |
49 | Zhou Y, Xie Z, Jiang J, et al. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction[J]. Nat. Catal., 2020, 3(5): 454-462. |
50 | Peng L S, Shen J J, Zheng X Q, et al. Rationally design of monometallic NiO-Ni3S2/NF heteronanosheets as bifunctional electrocatalysts for overall water splitting[J]. J. Catal., 2019, 369: 345-351. |
51 | Peng L, Liao M, Zheng X, et al. Accelerated alkaline hydrogen evolution on M(OH): x/M-MoPOx (M = Ni, Co, Fe, Mn) electrocatalysts by coupling water dissociation and hydrogen ad-desorption steps[J]. Chem. Sci., 2020, 11(9): 2487-2493. |
52 | Han H, Choi H, Mhin S, et al. Advantageous crystalline–amorphous phase boundary for enhanced electrochemical water oxidation[J]. Ener. Envir. Sci., 2019, 12(8): 2443-2454. |
53 | Jiang H, Lin Y, Chen B, et al. Ternary interfacial superstructure enabling extraordinary hydrogen evolution electrocatalysis[J]. Materials Today, 2018, 21(6): 602-610. |
54 | Li X C, She F S, Shen D, et al. Coherent nanoscale cobalt/cobalt oxide heterostructures embedded in porous carbon for the oxygen reduction reaction[J]. RSC Advances, 2018, 8(50): 28625-28631. |
55 | Jennings P C, Lysgaard S, Hansen H A, et al. Decoupling strain and ligand effects in ternary nanoparticles for improved ORR electrocatalysis[J]. Phys. Chem. Chem. Phys., 2016, 18(35): 24737-24745. |
56 | Liu F, Wu C, Yang S. Strain and ligand effects on CO2 reduction reactions over Cu-metal heterostructure catalysts[J]. J. Phy. Chem. C, 2017, 121(40): 22139-22146. |
57 | Luo M C, Guo S J. Strain-controlled electrocatalysis on multimetallic nanomaterials[J]. Nat. Rev. Mater., 2017, 2(11): 17059. |
58 | Xia Z, Guo S. Strain engineering of metal-based nanomaterials for energy electrocatalysis[J]. Chem. Soc. Rev., 2019, 48(12): 3265-3278. |
59 | Wang X S, Zhu Y H, Vasileff A, et al. Strain effect in bimetallic electrocatalysts in the hydrogen evolution reaction[J]. ACS Energy Lett., 2018, 3(5): 1198-1204. |
60 | Yang S, Liu F, Wu C, et al. Tuning surface properties of low dimensional materials via strain engineering[J]. Small, 2016, 12(30): 4028-4047. |
61 | Mavrikakis M, Hammer B, Norskov J K. Effect of strain on the reactivity of metal surfaces[J]. Phys. Rev. Lett., 1998, 81(13): 2819-2822. |
62 | Stamenkovic V R, Fowler B, Mun B S, et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability[J]. Science, 2007, 315(5811): 493-497. |
63 | Shao M, Chang Q, Dodelet J P, et al. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chem. Rev., 2016, 116(6): 3594-3657. |
64 | Kattel S, Wang G. Beneficial compressive strain for oxygen reduction reaction on Pt (111) surface[J]. J. Chem. Phys., 2014, 141(12): 124713. |
65 | Moseley P, Curtin W A. Computational design of strain in core-shell nanoparticles for optimizing catalytic activity[J]. Nano Lett., 2015, 15(6): 4089-4095. |
66 | Li M, Zhao Z, Cheng T, et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction[J]. Science, 2016, 354(6318): 1414-1419. |
67 | Du M, Cui L, Cao Y, et al. Mechanoelectrochemical catalysis of the effect of elastic strain on a platinum nanofilm for the ORR exerted by a shape memory alloy substrate[J]. J. Am. Chem. Soc., 2015, 137(23): 7397-7403. |
68 | Wang H, Xu S, Tsai C, et al. Direct and continuous strain control of catalysts with tunable battery electrode materials[J]. Science, 2016, 354(6315): 1031-1036. |
69 | Bu L, Zhang N, Guo S, et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis[J]. Science, 2016, 354(6318): 1410-1414. |
70 | Sakong S, Gross A. Dissociative adsorption of hydrogen on strained Cu surfaces[J]. Surf. Sci., 2003, 525(1/2/3): 107-118. |
71 | Liu F Z, Wu C, Yang G, et al. CO oxidation over strained Pt(100) surface: a DFT study[J]. J. Phy. Chem. C, 2015, 119(27): 15500-15505. |
72 | Ghosh T, Vukmirovic M B, DiSalvo F J, et al. Intermetallics as novel supports for Pt monolayer O2 reduction electrocatalysts: potential for significantly improving properties[J]. J. Am. Chem. Soc., 2010, 132(3): 906-907. |
73 | Zhang X, Lu G. Computational design of core/shell nanoparticles for oxygen reduction reactions[J]. J. Phys. Chem. Lett., 2014, 5(2): 292-297. |
74 | Back S, Jung Y. Importance of ligand effects breaking the scaling relation for core-shell oxygen reduction catalysts[J]. Chemcatchem, 2017, 9(16): 3173-3179. |
75 | Jansonius R P, Schauer P A, Dvorak D J, et al. Strain influences the hydrogen evolution activity and absorption capacity of palladium[J]. Angew. Chem. Int. Ed. Engl., 2020, 59:12192–12198 |
76 | Zheng X, Li L, Li J, et al. Intrinsic effects of strain on low-index surfaces of platinum: roles of the five 5d orbitals[J]. Phys. Chem. Chem. Phys., 2019, 21(6): 3242-3249. |
77 | Wexler R B, Martirez J M P, Rappe A M. Chemical pressure-driven enhancement of the hydrogen evolving activity of Ni2P from nonmetal surface doping interpreted via machine learning[J]. J. Am. Chem. Soc., 2018, 140(13): 4678-4683. |
78 | Wang X P, Wu H J, Xi S B, et al. Strain stabilized nickel hydroxide nanoribbons for efficient water splitting[J]. Ener. Envir. Sci., 2020, 13(1): 229-237. |
79 | Liu X, Zhang L, Zheng Y, et al. Uncovering the effect of lattice strain and oxygen deficiency on electrocatalytic activity of perovskite cobaltite thin films[J]. Adv. Sci. (Weinh), 2019, 6(6): 1801898. |
80 | Xie Y, Wang Z W, Zhu T Y, et al. Breaking the scaling relations for oxygen reduction reaction on nitrogen-doped graphene by tensile strain[J]. Carbon, 2018, 139: 129-136. |
81 | Wang X, Orikasa Y, Takesue Y, et al. Quantitating the lattice strain dependence of monolayer Pt shell activity toward oxygen reduction[J]. J. Am. Chem. Soc., 2013, 135(16): 5938-5941. |
82 | Zheng X Q, Peng L S, Li L, et al. Role of non-metallic atoms in enhancing the catalytic activity of nickel-based compounds for hydrogen evolution reaction [J]. Chem. Sci., 2018, 9(7): 1822-1830. |
[1] | Xiaoqing ZHOU, Chunyu LI, Guang YANG, Aifeng CAI, Jingyi WU. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature [J]. CIESC Journal, 2023, 74(S1): 141-153. |
[2] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[3] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
[4] | Chenyang ZHOU, Ying JIA, Yuemin ZHAO, Yong ZHANG, Zhijie FU, Yuqing FENG, Chenlong DUAN. Intensification of dry dense medium fluidization separation process from a mesoscale perspective [J]. CIESC Journal, 2022, 73(6): 2452-2467. |
[5] | Bo MENG, Yanping LIU, Xinke JIANG, Yifan HAN. The scale regulation of Fe5C2-MnO x and their catalytic performance for the preparation of olefins from syngas [J]. CIESC Journal, 2022, 73(6): 2677-2689. |
[6] | Mo ZHENG, Xiaoxia LI. Revealing reaction compromise in competition for volatile radicals during coal pryolysis via ReaxFF MD simulation [J]. CIESC Journal, 2022, 73(6): 2732-2741. |
[7] | Tienan LI, Bidan ZHAO, Peng ZHAO, Yongmin ZHANG, Junwu WANG. CFD-DEM simulation of the force acting on immersed baffles during the start-up stage of a gas-solid fluidized bed [J]. CIESC Journal, 2022, 73(6): 2649-2661. |
[8] | Liyuan LI, Jianqiang WANG, Yi CHEN, Youdi GUO, Jian ZHOU, Zhicheng LIU, Yangdong WANG, Zaiku XIE. Study on the mesoscale mechanism of coking and deactivation of ZSM-5 catalyst in methanol to propylene reaction [J]. CIESC Journal, 2022, 73(6): 2669-2676. |
[9] | Yanran ZHU, Liang GE, Xingya LI, Tongwen XU. Construction and application of three-phase ionic exchange membranes [J]. CIESC Journal, 2022, 73(6): 2397-2414. |
[10] | Ming JIANG, Qiang ZHOU. Progress on mechanisms of mesoscale structures and mesoscale drag model in gas-solid fluidized beds [J]. CIESC Journal, 2022, 73(6): 2468-2485. |
[11] | Yilin LIU, Yu LI, Yaxiong YU, Zheqing HUANG, Qiang ZHOU. Construction of two parameter mesoscale heat transfer model for gas-solid flow based on resetting temperature method [J]. CIESC Journal, 2022, 73(6): 2612-2621. |
[12] | Li NIU, Mengxi LIU, Haibei WANG. Hydrodynamic of mesoscale flow structure in dense phase fluidized bed [J]. CIESC Journal, 2022, 73(6): 2622-2635. |
[13] | Limin WANG, Shuyu GUO, Xing XIANG, Shaotong FU. Research progress of energy-minimization multi-scale method for turbulent system [J]. CIESC Journal, 2022, 73(6): 2415-2426. |
[14] | Ke XU, Guoqiang SHI, Dongfeng XUE. Inorganic hybrid perovskite cluster materials: luminescence properties of mesoscale perovskite materials [J]. CIESC Journal, 2022, 73(6): 2748-2756. |
[15] | Tianqi TANG, Yurong HE. Effect of magnetic field on the mesoscale structure evolution process in a wet particle fluidized bed [J]. CIESC Journal, 2022, 73(6): 2636-2648. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||