CIESC Journal ›› 2021, Vol. 72 ›› Issue (4): 2300-2308.DOI: 10.11949/0438-1157.20200981
• Material science and engineering, nanotechnology • Previous Articles Next Articles
LU Pengfei1,2(),JIN Zhihao1(),CUI Yanbin2,XU Guangwen1,2,WU Rongcheng2()
Received:
2020-07-20
Revised:
2020-09-29
Online:
2021-04-05
Published:
2021-04-05
Contact:
JIN Zhihao,WU Rongcheng
陆鹏飞1,2(),金志浩1(),崔彦斌2,许光文1,2,武荣成2()
通讯作者:
金志浩,武荣成
作者简介:
陆鹏飞(1995—),男,硕士研究生,基金资助:
CLC Number:
LU Pengfei, JIN Zhihao, CUI Yanbin, XU Guangwen, WU Rongcheng. Effect of raw material size on the synthesis of silicon carbide[J]. CIESC Journal, 2021, 72(4): 2300-2308.
陆鹏飞, 金志浩, 崔彦斌, 许光文, 武荣成. 原料粒度对合成碳化硅的影响研究[J]. 化工学报, 2021, 72(4): 2300-2308.
Add to citation manager EndNote|Ris|BibTeX
Proximate analysis war/% | BET/ (m2/g) | Ultimate analysis war/% | ||||||
---|---|---|---|---|---|---|---|---|
Fixed carbon | Ash | Volatile | Water | C | H | N | S | |
82.41 | 12.56 | 3.22 | 1.81 | 61.16 | 84.67 | 0.42 | 0.32 | 2.19 |
Table 1 Industrial analysis results and elemental analysis of tire semi-coke
Proximate analysis war/% | BET/ (m2/g) | Ultimate analysis war/% | ||||||
---|---|---|---|---|---|---|---|---|
Fixed carbon | Ash | Volatile | Water | C | H | N | S | |
82.41 | 12.56 | 3.22 | 1.81 | 61.16 | 84.67 | 0.42 | 0.32 | 2.19 |
Compositin | Content wd/% |
---|---|
SiO2 | 99.54 |
CaO | 0.06 |
Fe2O3 | 0.13 |
Al2O3 | 0.11 |
MgO | 0.08 |
burn reduces | 0.08 |
Table 2 Results of chemical analysis of silicon sand
Compositin | Content wd/% |
---|---|
SiO2 | 99.54 |
CaO | 0.06 |
Fe2O3 | 0.13 |
Al2O3 | 0.11 |
MgO | 0.08 |
burn reduces | 0.08 |
Silica sand size/mesh | Reaction loss rate, wtf/% | Reaction loss rate, wmf/% | Productive rate, w/% |
---|---|---|---|
20—40 | 28.31 | 40.48 | 52.33 |
50—80 | 66.99 | 0.58 | 91.05 |
100—120 | 65.03 | 2.41 | 86.41 |
140—160 | 63.05 | 7.53 | 81.65 |
Table 3 The burning loss rate and yield of silicon sand samples with different particle size
Silica sand size/mesh | Reaction loss rate, wtf/% | Reaction loss rate, wmf/% | Productive rate, w/% |
---|---|---|---|
20—40 | 28.31 | 40.48 | 52.33 |
50—80 | 66.99 | 0.58 | 91.05 |
100—120 | 65.03 | 2.41 | 86.41 |
140—160 | 63.05 | 7.53 | 81.65 |
Materials | Raw material particle size/mesh | Average particle size of SiC/μm |
---|---|---|
tire semi-coke | 20—35 | 161.8 |
140—160 | 53.353 | |
270—325 | 42.106 | |
silica sand | 50—80 | 37.679 |
100—120 | 40.015 | |
140—160 | 38.473 |
Table 4 Average particle size of SiC prepared from raw materials with different particle size
Materials | Raw material particle size/mesh | Average particle size of SiC/μm |
---|---|---|
tire semi-coke | 20—35 | 161.8 |
140—160 | 53.353 | |
270—325 | 42.106 | |
silica sand | 50—80 | 37.679 |
100—120 | 40.015 | |
140—160 | 38.473 |
1 | Chiew Y L, Cheong K Y. A review on the synthesis of SiC from plant-based biomasses[J]. Materials Science and Engineering: B, 2011, 176(13): 951-964. |
2 | Siergiej R R, Clarke R C, Sriram S, et al. Advances in SiC materials and devices: an industrial point of view[J]. Materials Science and Engineering: B, 1999, 61/62: 9-17. |
3 | 李冬燕, 魏巍, 韩峰. 高温除尘碳化硅膜的制备及其抗腐蚀特性[J]. 化工学报, 2019, 70(1): 336-344. |
Li D Y, Wei W, Han F. Preparation and corrosion resistance of SiC membrane using for dust removal in high temperature[J]. CIESC Journal, 2019, 70(1): 336-344. | |
4 | Fu Q G, Li H J, Shi X H, et al. Synthesis of silicon carbide nanowires by CVD without using a metallic catalyst[J]. Materials Chemistry and Physics, 2005, 100(1): 108-111. |
5 | Guo X Y, Jin G Q. Pore-size control in the sol-gel synthesis of mesoporous silicon carbide[J]. Journal of Materials Science, 2005, 40(5): 1301-1303. |
6 | Yang W, Araki H, Thaveethavorn S, et al. In situ synthesis and characterization of pure SiC nanowires on silicon wafer[J]. Applied Surface Science, 2005, 241(1/2): 236-240. |
7 | 刘巧钰, 李洪, 高鑫, 等. 泡沫碳化硅波纹规整填料内的液体流动特性[J]. 化工学报, 2016, 67(8): 3340-3346. |
Liu Q Y, Li H, Gao X, et al. Liquid flow characteristics of structured corrugation SiC-foam packing sheets[J]. CIESC Journal, 2016, 67(8): 3340-3346. | |
8 | Najafi A, Fard F G, Rezaie H R, et al. Synthesis and characterization of SiC nano powder with low residual carbon processed by sol-gel method[J]. Powder Technology, 2012, 219: 202-210. |
9 | Lao X B, Xu X Y, Jiang W H, et al. Effect of SiC nanoparticles on in-situ synthesis of SiC whiskers in corundum-mullite-SiC composites obtained by carbothermal reduction[J]. Ceramics International, 2020, 46(7): 9225-9232. |
10 | Kuang J L, Xiao T, Hou X J, et al. Microwave synthesis of worm-like SiC nanowires for thin electromagnetic wave absorbing materials[J]. Ceramics International, 2019, 45(9): 11660-11667. |
11 | Shahedi A M, Ahmadi Z, Sabahi N A, et al. Spark plasma sintering of TiC-SiCw ceramics[J]. Ceramics International, 2019, 45(16): 19808-19821. |
12 | Chen J P, Song G, Liu Z, et al. Preparation of SiC whiskers using graphene and rice husk ash and its photocatalytic property[J]. Journal of Alloys and Compounds, 2020, 833: 155072. |
13 | Singh D, Zhu D M, Zhou Y C, et al. Design, Development, and Applications of Engineering Ceramics and Composites[M]. John Wiley & Sons, Inc., 2010. |
14 | Narisawa M, Yasuda H, Mori R, et al. Silicon carbide particle formation from carbon black-polymethylsilsesquioxane mixtures with melt pressing[J]. Journal of the Ceramic Society of Japan, 2008, 116(1349): 121-125. |
15 | Cui X L, Wang Y H, Wang L, et al. Synthesis of nanometer-sized TiC and SiC from petroleum coke by reactive milling[J]. Petroleum Science and Technology, 2001, 19(7/8): 971-978. |
16 | Sulardjaka, Jamasri, Wildan M W, et al. Method for increasing β-SiC yield on solid state reaction of coal fly ash and activated carbon powder[J]. Bulletin of Materials Science, 2011, 34(4): 1013-1016. |
17 | Wang L, Hu X B, Xu X G, et al. Synthesis of high purity SiC powder for high-resistivity SiC single crystals growth[J]. Journal of Materials Science & Technology, 2007, 23(1): 120-124. |
18 | Guo X Z, Zhu L, Li W Y, et al. Preparation of SiC powders by carbothermal reduction with bamboo charcoal as renewable carbon source[J]. Journal of Advanced Ceramics, 2013, 2(2): 128-134. |
19 | Liu M, Zeng X, Ma C, et al. Injectable hydrogels for cartilage and bone tissue engineering[J]. Bone Research, 2017, 5: 17014. |
20 | Shen Z Z, Chen J H, Li B, et al. A novel two-stage synthesis for 3C-SiC nanowires by carbothermic reduction and their photoluminescence properties[J]. Journal of Materials Science, 2019, 54(19): 12450-12462. |
21 | Wei J, Li K Z, Li H J, et al. Growth and morphology of one-dimensional SiC nanostructures without catalyst assistant[J]. Materials Chemistry and Physics, 2006, 95(1): 140-144. |
22 | 阳永荣, 王靖岱, 颜丽红. 废轮胎热解再生炭黑表面活性[J]. 化工学报, 2005, 56(4): 726-732. |
Yang Y R, Wang J D, Yan L H. Surface character of pyrolytic carbon black[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(4): 726-732. | |
23 | Wang J K, Zhang Y Z, Li J Y, et al. Catalytic effect of cobalt on microwave synthesis of β-SiC powder[J]. Powder Technology, 2017, 317: 209-215. |
24 | Lin Y J, Tsang C P. The effects of starting precursors on the carbothermal synthesis of SiC powders[J]. Ceramics International, 2003, 29(1): 69-75. |
25 | Jiang S N, Gao S B, Liu Y, et al. An efficient way of recycling silicon kerf waste for synthesis of high-quality SiC[J]. International Journal of Applied Ceramic Technology, 2020, 17(1): 130-137. |
26 | Guo X Z, Zhang L J, Yan L Q, et al. Preparation of silicon carbide using bamboo charcoal as carbon source[J]. Materials Letters, 2009, 64(3): 331-333. |
27 | An Z B, Xue J, Cao H, et al. A facile synthesis of silicon carbide nanoparticles with high specific surface area by using corn cob[J]. Advanced Powder Technology, 2018, 30(1): 164-169. |
28 | 古卫俊, 贾素秋, 邱敬东, 等. 稻壳制备碳化硅晶须[J]. 硅酸盐学报, 2014, 42(1): 28-32. |
Gu W J, Jia S Q, Qiu J D, et al. Preparation of SiC whiskers from rice husk[J]. Journal of the Chinese Ceramic Society, 2014, 42(1): 28-32. | |
29 | 郝建英, 王英勇, 童希立, 等. 不同碳硅比对合成高比表面积炭化硅的影响[J]. 材料导报, 2012, 26(10): 73-76. |
Hao J Y, Wang Y Y, Tong X L, et al. Effect of n(C)/n(Si) on the synthesis of high surface area SiC[J]. Materials Review, 2012, 26(10): 73-76. | |
30 | 蒙真真, 武志红, 刘新伟, 等. 竹节状碳化硅晶须吸波性能研究[J]. 化工学报, 2020, 71(4): 1889-1897. |
Meng Z Z, Wu Z H, Liu X W, et al. Study on absorbing properties of bamboo-like silicon carbide whiskers[J]. CIESC Journal, 2020, 71(4): 1889-1897. | |
31 | Park W S, Joo B J, Choi D J, et al. A study on the thermal stability of silicon carbide whiskers on growth temperature[J]. Journal of Materials Science, 2005, 40(20): 5529-5531. |
32 | Silva P C, Figueiredo J L. Production of SiC and Si3N4 whiskers in C+SiO2 solid mixtures[J]. Materials Chemistry and Physics, 2001, 72(3): 326-331. |
33 | Li X K, Liu L, Zhang Y X, et al. Synthesis of nanometre silicon carbide whiskers from binary carbonaceous silica aerogels[J]. Carbon, 2001, 39(2): 159-165. |
34 | Niu F X, Wang Y X, Fu S L, et al. Ferrocene-assisted growth of SiC whiskers with hexagonal cross-section from a preceramic polymer[J]. Ceramics International, 2017, 43(15): 12983-12987. |
35 | 杨书廷, 杨伟光, 尹艳红, 等. 微波热处理对La-Ni-Pt纳米合金催化剂性质的影响[J]. 材料热处理学报, 2006, 27(5): 22-25, 131. |
Yang S T, Yang W G, Yin Y H, et al. Influence of microwave heat-treatment on properties of La-Ni-Pt nano-alloy catalysts[J]. Transactions of Materials and Heat Treatment, 2006, 27(5): 22-25, 131. | |
36 | Choi H J, Lee J G. Stacking faults in silicon carbide whiskers[J]. Ceramics International, 2000, 26(1): 7-12. |
[1] | Qihong ZOU, Qian LI, Tianshu GE. Experimental study of two-stage parallel desiccant coated heat pump system based on multi-objectives [J]. CIESC Journal, 2023, 74(S1): 265-271. |
[2] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[3] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[4] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[5] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[6] | Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger [J]. CIESC Journal, 2023, 74(3): 1352-1359. |
[7] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[8] | Peixu ZHOU, Yalun LI, Gongran YE, Yuan ZHUANG, Xilei WU, Zhikai GUO, Xiaohong HAN. Influence of physical properties of working fluids on leakage and diffusion characteristics of refrigerant in limited space [J]. CIESC Journal, 2023, 74(2): 953-967. |
[9] | Guojia YU, Dongyu JIN, Zhiyong ZHOU, Fan ZHANG, Zhongqi REN. Advances in the design, synthesis and application of porous liquids [J]. CIESC Journal, 2023, 74(1): 257-275. |
[10] | Tongpeng LU, Xiaolin PAN, Hongfei WU, Yu LI, Haiyan YU. Effect of organic flocculant on settling performance of iron-bearing minerals and its adsorption mechanism [J]. CIESC Journal, 2022, 73(9): 4122-4132. |
[11] | Jingwei ZHANG, Yiwei ZHOU, Zhuo CHEN, Jianhong XU. Advances in frontiers of organic synthesis in microreactor [J]. CIESC Journal, 2022, 73(8): 3472-3482. |
[12] | Zhibin LU, Yimeng LI, Chang HE, Bingjian ZHANG, Qinglin CHEN, Ming PAN. Integrating physics-informed neural networks with partitioned coupling strategy for modeling conjugate heat transfer [J]. CIESC Journal, 2022, 73(12): 5483-5493. |
[13] | Tianyu YANG, Tianshu GE. Effect of desiccant adsorption isotherm on dehumidification performance of desiccant coated heat exchanger [J]. CIESC Journal, 2022, 73(12): 5367-5375. |
[14] | Juntao DAI, Li LIU, Shuai LIU, Hanyang GU, Ke WANG. Investigation of bubble behaviors in gas-liquid two-phase flow in helically coiled tube based on wire mesh sensor [J]. CIESC Journal, 2022, 73(10): 4377-4388. |
[15] | Pengbo FU,Jinyi TIAN,Wenjie LYU,Yuan HUANG,Yi LIU,Hao LU,Qiang YANG,Guangli XIU,Hualin WANG. Physical water treatment technology [J]. CIESC Journal, 2022, 73(1): 59-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||