CIESC Journal ›› 2021, Vol. 72 ›› Issue (2): 772-782.DOI: 10.11949/0438-1157.20200994
• Reviews and monographs • Previous Articles Next Articles
LIU Xiyang(),FU Taotao(),ZHU Chunying,MA Youguang
Received:
2020-07-23
Revised:
2020-09-11
Online:
2021-02-05
Published:
2021-02-05
Contact:
FU Taotao
通讯作者:
付涛涛
作者简介:
刘西洋(1997—),男,硕士研究生,基金资助:
CLC Number:
LIU Xiyang, FU Taotao, ZHU Chunying, MA Youguang. Progress on droplet formation mechanism in non-Newtonian fluids in microchannels[J]. CIESC Journal, 2021, 72(2): 772-782.
刘西洋, 付涛涛, 朱春英, 马友光. 微通道内非牛顿流体中液滴生成机理研究进展[J]. 化工学报, 2021, 72(2): 772-782.
Add to citation manager EndNote|Ris|BibTeX
1 | Tirtaatmadja V, McKinley G H, Cooper-White J J. Drop formation and breakup of low viscosity elastic fluids: effects of molecular weight and concentration[J]. Physics of Fluids, 2006, 18(4): 043101. |
2 | Salehi M S, Esfidani M T, Afshin H, et al. Experimental investigation and comparison of Newtonian and non-Newtonian shear-thinning drop formation[J]. Experimental Thermal and Fluid Science, 2018, 94: 148-158. |
3 | Cohen I, Brenner M P, Eggers J, et al. Two fluid drop snap-off problem: experiments and theory[J]. Physical Review Letters, 1999, 83(6): 1147-1150. |
4 | Doshi P, Basaran O A. Self-similar pinch-off of power law fluids[J]. Physics of Fluids, 2004, 16(3): 585-593. |
5 | Stone H A, Stroock A D, Ajdari A. Engineering flows in small devices[J]. Annual Review of Fluid Mechanics, 2004, 36(1): 381-411. |
6 | Utada A S, Lorenceau E, Link D R, et al. Monodisperse double emulsions generated from a microcapillary device[J]. Science, 2005, 308(5721): 537-541. |
7 | Abate A R, Thiele J, Weitz D A. One-step formation of multiple emulsions in microfluidics[J]. Lab on a Chip, 2011, 11(2): 253-258. |
8 | 刘兆利, 张鹏飞. 微反应器在化学化工领域中的应用[J]. 化工进展, 2016, 35(1): 10-17. |
Liu Z L, Zhang P F. Applications of microreactor in chemistry and chemical engineering[J]. Chemical Industry and Engineering Progress, 2016, 35(1): 10-17. | |
9 | Song H, Chen D L, Ismagilov R F. Reactions in droplets in microfluidic channels[J]. Angewandte Chemie-International Edition, 2006, 45(44): 7336-7356. |
10 | Morrison N F, Harlen O G. Viscoelasticity in inkjet printing[J]. Rheologica Acta, 2010, 49(6): 619-632. |
11 | Hoath S D, Hsiao W K, Martin G D, et al. Oscillations of aqueous PEDOT: PSS fluid droplets and the properties of complex fluids in drop-on-demand inkjet printing[J]. Journal of Non-Newtonian Fluid Mechanics, 2015, 223: 28-36. |
12 | Anton N, Bally F, Serra C A, et al. A new microfluidic setup for precise control of the polymer nanoprecipitation process and lipophilic drug encapsulation[J]. Soft Matter, 2012, 8(41): 10628-10635. |
13 | Dittrich P S, Manz A. Lab-on-a-chip: microfluidics in drug discovery[J]. Nature Reviews Drug Discovery, 2006, 5(3): 210-218. |
14 | Rubio M, Ponce-Torres A, Vega E J, et al. Complex behavior very close to the pinching of a liquid free surface[J]. Physical Review Fluids, 2019, 4(2): 021602. |
15 | Fu T, Wu Y, Ma Y, et al. Droplet formation and breakup dynamics in microfluidic flow-focusing devices: from dripping to jetting[J]. Chemical Engineering Science, 2012, 84: 207-217. |
16 | Renardy M. Self-similar jet breakup for a generalized PTT model[J]. Journal of Non-Newtonian Fluid Mechanics, 2002, 103(2/3): 261-269. |
17 | 骆广生, 王凯, 王佩坚, 等. 微反应器内聚合物合成研究进展[J]. 化工学报, 2014, 65(7): 2563-2573. |
Luo G S, Wang K, Wang P J, et al. Advances in polymer synthesis in microreactors[J]. CIESC Journal, 2014, 65(7): 2563-2573. | |
18 | 付涛涛, 朱春英, 马友光. 微通道内卫星液滴生成机理与惯性分离机制[J]. 化工学报, 2020, 71(2): 451-458. |
Fu T T, Zhu C Y, Ma Y G. Mechanism of generation and inertial separation of satellite droplets in microchannels[J]. CIESC Journal, 2020, 71(2): 451-458. | |
19 | Vladisavljević G T, Kobayashi I, Nakajima M. Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices[J]. Microfluidics and Nanofluidics, 2012, 13(1): 151-178. |
20 | Harvie D J E, Davidson M R, Cooper-White J J, et al. A parametric study of droplet deformation through a microfluidic contraction: shear thinning liquids[J]. International Journal of Multiphase Flow, 2007, 33(5): 545-556. |
21 | Hong J S, Cooper-White J. Drop formation of carbopol dispersions displaying yield stress, shear thinning and elastic properties in a flow-focusing microfluidic channel[J]. Korea-Australia Rheology Journal, 2009, 21(4): 269-280. |
22 | Du W, Fu T, Duan Y, et al. Breakup dynamics for droplet formation in shear-thinning fluids in a flow-focusing device[J]. Chemical Engineering Science, 2018, 176: 66-76. |
23 | Arratia P E, Gollub J P, Durian D J. Polymeric filament thinning and breakup in microchannels[J]. Physical Review E, 2008, 77(3Pt 2): 036309. |
24 | Du W, Fu T, Zhang Q, et al. Self-similar breakup of viscoelastic thread for droplet formation in flow-focusing devices[J]. AIChE Journal, 2017, 63(11): 5196-5206. |
25 | Zhang Q, Zhu C, Du W, et al. Formation dynamics of elastic droplets in a microfluidic T-junction[J]. Chemical Engineering Research and Design, 2018, 139: 188-196. |
26 | Jiang X F, Wu Y N, Ma Y, et al. Formation and breakup dynamics of ferrofluid drops[J]. Chemical Engineering Research & Design, 2016, 115: 262-269. |
27 | Steinhaus B, Shen A Q, Sureshkumar R. Dynamics of viscoelastic fluid filaments in microfluidic devices[J]. Physics of Fluids, 2007, 19(7): 073103. |
28 | Zenit R, Feng J J. Hydrodynamic interactions among bubbles, drops, and particles in non-Newtonian liquids[J]. Annual Review of Fluid Mechanics, 2018, 50: 505-534. |
29 | Bird R B, Careau P J. A nonlinear viscoelastic model for polymer solutions and melts—I[J]. Chemical Engineering Science, 1968, 23(5): 427-434. |
30 | Rostami B, Morini G L. Experimental characterization of a micro cross-junction as generator of Newtonian and non-Newtonian droplets in silicone oil flow at low capillary numbers[J]. Experimental Thermal and Fluid Science, 2019, 103: 191-200. |
31 | Rostami B, Morini G L. Generation of Newtonian and non-Newtonian droplets in silicone oil flow by means of a micro cross-junction[J]. International Journal of Multiphase Flow, 2018, 105: 202-216. |
32 | Rostami B, Morini G L. Micro droplets of non-Newtonian solutions in silicone oil flow through a hydrophobic micro cross-junction[C]//Ricci R, Dalessandro V. 35th UIT Heat Transfer Conference. Bristol, England: Iop Publishing Ltd., 2017: UNSP 012021. |
33 | 杜威. 微通道内非常规流体液滴生成与界面动力学研究[D]. 天津: 天津大学, 2017. |
Du W. Study on droplet formation and interfacial dynamic in unconventional fluids in microchannels[D]. Tianjin: Tianjin University, 2017. | |
34 | Fu T, Ma Y, Li H Z. Breakup dynamics of slender droplet formation in shear-thinning fluids in flow-focusing devices[J]. Chemical Engineering Science, 2016, 144: 75-86. |
35 | Shi Y, Tang G H. Lattice Boltzmann simulation of droplet formation in non-Newtonian fluids[J]. Communications in Computational Physics, 2015, 17(4): 1056-1072. |
36 | Chen Q, Li J, Song Y, et al. Modeling of Newtonian droplet formation in power-law non-Newtonian fluids in a flow-focusing device[J]. Heat and Mass Transfer, 2020, 56(9): 2711-2723. |
37 | 陈琦, 李京坤, 宋昱, 等. 流动聚焦微通道内牛顿微液滴在幂律剪切致稀流体中的生成研究[J]. 化工学报, 2020, 71(4): 1510-1519. |
Chen Q, Li J K, Song Y, et al. Newtonian droplet generation in shear-thinning fluids in flow-focusing microchannel[J]. CIESC Journal, 2020, 71(4): 1510-1519. | |
38 | Liu H, Zhang Y. Droplet formation in microfluidic cross-junctions[J]. Physics of Fluids, 2011, 23(8): 082101. |
39 | Chiarello E, Gupta A, Mistura G, et al. Droplet breakup driven by shear thinning solutions in a microfluidic T-junction[J]. Physical Review Fluids, 2017, 2(12): 123602. |
40 | Wong V L, Loizou K, Lau P L, et al. Characterizing droplet breakup rates of shear-thinning dispersed phase in microreactors[J]. Chemical Engineering Research and Design, 2019, 144: 370-385. |
41 | Sang L, Hong Y, Wang F. Investigation of viscosity effect on droplet formation in T-shaped microchannels by numerical and analytical methods[J]. Microfluidics and Nanofluidics, 2009, 6(5): 621-635. |
42 | Agarwal V G, Singh R, Bahga S S, et al. Dynamics of droplet formation and flow regime transition in a T-shaped microfluidic device with a shear-thinning continuous phase[J]. Physical Review Fluids, 2020, 5(4): 044203. |
43 | Sontti S G, Atta A. CFD analysis of microfluidic droplet formation in non-Newtonian liquid[J]. Chemical Engineering Journal, 2017, 330: 245-261. |
44 | Chiarello E, Derzsi L, Pierno M, et al. Generation of oil droplets in a non-Newtonian liquid using a microfluidic T-junction[J]. Micromachines, 2015, 6(12): 1825-1835. |
45 | Roumpea E, Chinaud M, Angeli P. Experimental investigations of non-Newtonian/Newtonian liquid-liquid flows in microchannels[J]. AIChE Journal, 2017, 63(8): 3599-3609. |
46 | Fu T, Wei L, Zhu C, et al. Flow patterns of liquid-liquid two-phase flow in non-Newtonian fluids in rectangular microchannels[J]. Chemical Engineering and Processing: Process Intensification, 2015, 91: 114-120. |
47 | Arratia P E, Cramer L A, Gollub J P, et al. The effects of polymer molecular weight on filament thinning and drop breakup in microchannels[J]. New Journal of Physics, 2009, 11: 115006. |
48 | Derzsi L, Kasprzyk M, Plog J P, et al. Flow focusing with viscoelastic liquids[J]. Physics of Fluids, 2013, 25(9): 092001. |
49 | Anna S L, Mayer H C. Microscale tipstreaming in a microfluidic flow focusing device[J]. Physics of Fluids, 2006, 18(12): 121512. |
50 | Montanero J M, Gañán-Calvo A M. Dripping, jetting and tip streaming[J]. Reports on Progress in Physics, 2020, 83(9): 097001. |
51 | Zhou C, Yue P, Feng J J. Formation of simple and compound drops in microfluidic devices[J]. Physics of Fluids, 2006, 18(9): 092105. |
52 | Gupta A, Sbragaglia M. A lattice Boltzmann study of the effects of viscoelasticity on droplet formation in microfluidic cross-junctions[J]. The European Physical Journal E, 2016, 39(1): 2. |
53 | Lee W, Walker L M, Anna S L. Competition between viscoelasticity and surfactant dynamics in flow focusing microfluidics[J]. Macromolecular Materials and Engineering, 2011, 296(3/4): 203-213. |
54 | Du W, Fu T, Zhang Q, et al. Breakup dynamics for droplet formation in a flow-focusing device: rupture position of viscoelastic thread from matrix[J]. Chemical Engineering Science, 2016, 153: 255-269. |
55 | Zhao C X, Miller E, Cooper-White J J, et al. Effects of fluid-fluid interfacial elasticity on droplet formation in microfluidic devices[J]. AIChE Journal, 2011, 57(7): 1669-1677. |
56 | 张沁丹, 付涛涛, 朱春英, 等. 十字聚焦型微通道内弹状液滴在黏弹性流体中的生成与尺寸预测[J]. 化工学报, 2016, 67(2): 504-511. |
Zhang Q D, Fu T T, Zhu C Y, et al. Formation and size prediction of slug droplet in viscoelastic fluid in flow-focusing microchannel[J]. CIESC Journal, 2016, 67(2): 504-511. | |
57 | Dollet B, van Hoeve W, Raven J P, et al. Role of the channel geometry on the bubble pinch-off in flow-focusing devices[J]. Physical Review Letters, 2008, 100(3): 034504. |
58 | Nooranidoost M, Izbassarov D, Muradoglu M. Droplet formation in a flow focusing configuration: effects of viscoelasticity[J]. Physics of Fluids, 2016, 28(12): 123102. |
59 | Li X B, Li F C, Kinoshita H, et al. Dynamics of viscoelastic fluid droplet under very low interfacial tension in a serpentine T-junction microchannel[J]. Microfluidics and Nanofluidics, 2015, 18(5/6): 1007-1021. |
60 | Denn M M. Fifty years of non-Newtonian fluid dynamics[J]. AIChE Journal, 2004, 50(10): 2335-2345. |
61 | Marshall K A, Walker T W. Investigating the dynamics of droplet breakup in a microfluidic cross-slot device for characterizing the extensional properties of weakly-viscoelastic fluids[J]. Rheologica Acta, 2019, 58(9): 573-590. |
62 | Christopher G F, Anna S L. Passive breakup of viscoelastic droplets and filament self-thinning at a microfluidic T-junction[J]. Journal of Rheology, 2009, 53(3): 663-683. |
63 | Husny J, Cooper-White J J. The effect of elasticity on drop creation in T-shaped microchannels[J]. Journal of Non-Newtonian Fluid Mechanics, 2006, 137(1/2/3): 121-136. |
64 | Clasen C, Eggers J, Fontelos M A, et al. The beads-on-string structure of viscoelastic threads[J]. Journal of Fluid Mechanics, 2006, 556: 283-308. |
65 | Sostarecz M C, Belmonte A. Beads-on-string phenomena in wormlike micellar fluids[J]. Physics of Fluids, 2004, 16(9): L67-L70. |
66 | Oliveira M S N, McKinley G H. Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers[J]. Physics of Fluids, 2005, 17(7): 071704. |
67 | Bhat P P, Pasquali M, Basaran O A. Beads-on-string formation during filament pinch-off: dynamics with the PTT model for non-affine motion[J]. Journal of Non-Newtonian Fluid Mechanics, 2009, 159(1/2/3): 64-71. |
68 | Clasen C, Bico J, Entov V M, et al. ‘Gobbling drops': the jetting-dripping transition in flows of polymer solutions[J]. Journal of Fluid Mechanics, 2009, 636: 5-40. |
69 | Wagner C, Amarouchene Y, Bonn D, et al. Droplet detachment and satellite bead formation in viscoelastic fluids[J]. Physical Review Letters, 2005, 95(16): 164504. |
70 | Pingulkar H, Peixinho J, Crumeyrolle O. Drop dynamics of viscoelastic filaments[J]. Physical Review Fluids, 2020, 5(1): 011301. |
71 | Oliveira M S N, Yeh R, McKinley G H. Iterated stretching, extensional rheology and formation of beads-on-a-string structures in polymer solutions[J]. Journal of Non-Newtonian Fluid Mechanics, 2006, 137(1/2/3): 137-148. |
72 | Sattler R, Gier S, Eggers J, et al. The final stages of capillary break-up of polymer solutions[J]. Physics of Fluids, 2012, 24(2): 023101. |
73 | Sattler R, Wagner C, Eggers J. Blistering pattern and formation of nanofibers in capillary thinning of polymer solutions[J]. Physical Review Letters, 2008, 100(16): 164502. |
74 | Eggers J. Instability of a polymeric thread[J]. Physics of Fluids, 2014, 26(3): 033106. |
75 | Christanti Y, Walker L M. Effect of fluid relaxation time of dilute polymer solutions on jet breakup due to a forced disturbance[J]. Journal of Rheology, 2002, 46(3): 733-748. |
76 | Deblais A, Velikov K P, Bonn D. Pearling instabilities of a viscoelastic thread[J]. Physical Review Letters, 2018, 120(19): 194501. |
[1] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[2] | Xiaoqing ZHOU, Chunyu LI, Guang YANG, Aifeng CAI, Jingyi WU. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature [J]. CIESC Journal, 2023, 74(S1): 141-153. |
[3] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[4] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[5] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[6] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[7] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[8] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[9] | Xin DONG, Yongrui SHAN, Yinuo LIU, Ying FENG, Jianwei ZHANG. Numerical simulation of bubble plume vortex characteristics for non-Newtonian fluids [J]. CIESC Journal, 2023, 74(5): 1950-1964. |
[10] | Zhengtao LI, Zhijie YUAN, Gaohong HE, Xiaobin JIANG. Study of the mechanism of internal circulation regulation during evaporation of NaCl droplets on hydrophobic interface [J]. CIESC Journal, 2023, 74(5): 1904-1913. |
[11] | Yuntong GE, Wei WANG, Kai LI, Fan XIAO, Zhipeng YU, Jing GONG. AFM study of the interaction forces between micro-oil droplets and modified silica surfaces in multiphase dispersion systems [J]. CIESC Journal, 2023, 74(4): 1651-1659. |
[12] | Lu DENG, Xiaojie JU, Wenjie ZHANG, Rui XIE, Wei WANG, Zhuang LIU, Dawei PAN, Liangyin CHU. Controllable preparation of radioactive chitosan embolic microspheres by microfluidic method [J]. CIESC Journal, 2023, 74(4): 1781-1794. |
[13] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[14] | Xueting ZHANG, Jijiang HU, Jing ZHAO, Bogeng LI. Preparation of high molecular weight polypropylene glycol in microchannel reactor [J]. CIESC Journal, 2023, 74(3): 1343-1351. |
[15] | Xingyu YANG, You MA, Chunying ZHU, Taotao FU, Youguang MA. Study on liquid-liquid distribution in comb parallel microchannels [J]. CIESC Journal, 2023, 74(2): 698-706. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||