CIESC Journal ›› 2021, Vol. 72 ›› Issue (4): 2027-2037.DOI: 10.11949/0438-1157.20201011
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
CHANG Zhihao(),CUI Xiaoyu(),GENG Hui,SHE Hailong
Received:
2020-07-24
Revised:
2020-09-22
Online:
2021-04-05
Published:
2021-04-05
Contact:
CUI Xiaoyu
通讯作者:
崔晓钰
作者简介:
常志昊(1996—),男,硕士研究生,基金资助:
CLC Number:
CHANG Zhihao, CUI Xiaoyu, GENG Hui, SHE Hailong. Experimental study on performance of two types of printed circuit board microchannel J-T coolers[J]. CIESC Journal, 2021, 72(4): 2027-2037.
常志昊, 崔晓钰, 耿晖, 佘海龙. 两种印刷电路板式微通道节流制冷器性能实验研究[J]. 化工学报, 2021, 72(4): 2027-2037.
Add to citation manager EndNote|Ris|BibTeX
试件 | 通道 | 尺寸 |
---|---|---|
试件一 | 高压回热 | 0.55 mm×0.40 mm×105 mm |
低压回热 | 0.55 mm×0.40 mm×145 mm | |
节流段 | 0.15 mm×0.10 mm×40 mm | |
膨胀腔 | 下底10 mm, 斜角150° | |
试件二 | 流道当量直径 | 337 |
回热节流段长度 | 145 mm | |
针肋直径 | 0.50 mm | |
膨胀腔 | 下底7 mm, 斜角150° |
Table 1 Channel dimension of coolers
试件 | 通道 | 尺寸 |
---|---|---|
试件一 | 高压回热 | 0.55 mm×0.40 mm×105 mm |
低压回热 | 0.55 mm×0.40 mm×145 mm | |
节流段 | 0.15 mm×0.10 mm×40 mm | |
膨胀腔 | 下底10 mm, 斜角150° | |
试件二 | 流道当量直径 | 337 |
回热节流段长度 | 145 mm | |
针肋直径 | 0.50 mm | |
膨胀腔 | 下底7 mm, 斜角150° |
测点 | 试件一 | 试件二 | ||
---|---|---|---|---|
位置 | 距离/mm | 位置 | 距离/mm | |
T1 | 进口 | 0.00 | 进口 | 0.00 |
T2 | 回热进口 | 5.00 | 回热节流进口 | 5.00 |
T3 | 回热段 | 40.00 | 回热节流段 | 41.25 |
T4 | 回热段 | 75.00 | 回热节流段 | 77.50 |
T5 | 节流进口 | 110.00 | 回热节流段 | 113.75 |
T6 | 节流段 | 130.00 | 回热节流出口 | 150.00 |
T7 | 节流出口 | 150.00 | 膨胀腔 | 155.00 |
T8 | 膨胀腔 | 155.00 | 出口 | 0 |
T9 | 出口 | 0 |
Table 2 Axial distance between temperature measuring points of coolers and inlet
测点 | 试件一 | 试件二 | ||
---|---|---|---|---|
位置 | 距离/mm | 位置 | 距离/mm | |
T1 | 进口 | 0.00 | 进口 | 0.00 |
T2 | 回热进口 | 5.00 | 回热节流进口 | 5.00 |
T3 | 回热段 | 40.00 | 回热节流段 | 41.25 |
T4 | 回热段 | 75.00 | 回热节流段 | 77.50 |
T5 | 节流进口 | 110.00 | 回热节流段 | 113.75 |
T6 | 节流段 | 130.00 | 回热节流出口 | 150.00 |
T7 | 节流出口 | 150.00 | 膨胀腔 | 155.00 |
T8 | 膨胀腔 | 155.00 | 出口 | 0 |
T9 | 出口 | 0 |
传感器 | 精度 | 量程 |
---|---|---|
质量流量计 | ±1.0% | 0~8.90 g/s |
T型热电偶 | ±0.2K | 73.0~673.0 K |
高压传感器 | ±0.5% | 0~10.00 MPa |
低压传感器 | ±0.5% | 0~1.50 MPa |
Table 3 Sensor range and precision
传感器 | 精度 | 量程 |
---|---|---|
质量流量计 | ±1.0% | 0~8.90 g/s |
T型热电偶 | ±0.2K | 73.0~673.0 K |
高压传感器 | ±0.5% | 0~10.00 MPa |
低压传感器 | ±0.5% | 0~1.50 MPa |
1 | Zhang B, Larson M, Rodriguez J. Passive coolers for pre-cooling of JT loops for deep space infrared imaging applications[J]. Cryogenics, 2010, 50(9): 628-632. |
2 | Levenduski R, Scarlotti R. Joule-Thomson cryocooler for space applications[J]. Cryogenics, 1996, 36(10): 859-866. |
3 | Zhang A L, Xu L X, Sandison G A, et al. A microscale model for prediction of breast cancer cell damage during cryosurgery[J]. Cryobiology, 2003, 47(2): 143-154. |
4 | Tsuzuki N, Kato Y, Ishiduka T. High performance printed circuit heat exchanger[J]. Applied Thermal Engineering, 2007, 27(10): 1702-1707. |
5 | Kim Y H, Seo J E, Choi Y J, et al. Heat transfer characteristics and pressure drop in straight microchannel of the printed circuit heat exchangers[J]. Transactions of the Korean Society of Mechanical Engineers B, 2008, 32(12): 915-923. |
6 | Peles Y, Koşar A, Mishra C, et al. Forced convective heat transfer across a pin fin micro heat sink[J]. International Journal of Heat and Mass Transfer, 2005, 48(17): 3615-3627. |
7 | Liu M H, Liu D, Xu S, et al. Experimental study on liquid flow and heat transfer in micro square pin fin heat sink[J]. International Journal of Heat and Mass Transfer, 2011, 54(25/26): 5602-5611. |
8 | Liu Z G, Zhang C W, Guan N. Experimental investigation on resistance characteristics in micro/mini cylinder group[J]. Experimental Thermal and Fluid Science, 2011, 35(1): 226-233. |
9 | Yu X, Woodcock C, Plawsky J, et al. An investigation of convective heat transfer in microchannel with Piranha Pin Fin[J]. International Journal of Heat and Mass Transfer, 2016, 103: 1125-1132. |
10 | Little W A. Microminiature refrigeration—small is better[J]. Physica B+C, 1982, 109/110: 2001-2009. |
11 | Lerou P P P M, Jansen H, Venhorst G C F, et al. Progress in micro joule-Thomson cooling at twente university[C]//Cryocoolers 13. 2005. |
12 | Lerou P P P M, Veenstra T T, Burger J F, et al. Optimization of counterflow heat exchanger geometry through minimization of entropy generation[J]. Cryogenics, 2005, 45(10/11): 659-669. |
13 | Gong M Q, Wu J F, Yan B, et al. Study on a miniature mixed-gases Joule-Thomson cooler driven by an oil-lubricated mini-compressor for 120 K temperature ranges[J]. Physics Procedia, 2015, 67: 405-410. |
14 | Cao H S, Vanapalli S, Holland H J, et al. A micromachined Joule-Thomson cryogenic cooler with parallel two-stage expansion[J]. International Journal of Refrigeration, 2016, 69: 223-231. |
15 | Lerou P P P M, Venhorst G C F, Veenstra T T, et al. All-micromachined Joule-Thomson cold stage[EB/OL]. 2007, oai:doc.utwente.nl:75542 |
16 | 王昂, 公茂琼, 吴剑峰. 基于3D打印的微微型混合工质J-T制冷器实验研究[J]. 工程热物理学报, 2015, 36(3): 600-604. |
Wang A, Gong M Q, Wu J F. Experimental investigation on a 3D print made microminiature mixed refrigerant J-T cooler[J]. Journal of Engineering Thermophysics, 2015, 36(3): 600-604. | |
17 | Cao H S, Vanapalli S, Holland H J, et al. Heat transfer and pressure drop in microchannels with isotropically etched Pillars at sub-ambient temperatures[J]. International Journal of Refrigeration, 2019, 98: 334-342. |
18 | Mikulin E, Shevich J, Danilenko T, et al. The miniature Joule-Thomson refrigerator[J]. Cryogenics, 1992, 32: 17-19. |
19 | Narayanan S P, Venkatarathnam G. Analysis of performance of heat exchangers used in practical micro miniature refrigerators[J]. Cryogenics, 1999, 39(6): 517-527. |
20 | 胡芳. 印刷电路板式换热器流动与传热特性研究[D]. 南京: 南京航空航天大学, 2012. |
Hu F. Investigations of the flow and heat transfer characteristics in printed circuit heat exchanger[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. | |
21 | Huang C Y, Cai W H, Wang Y, et al. Review on the characteristics of flow and heat transfer in printed circuit heat exchangers[J]. Applied Thermal Engineering, 2019, 153: 190-205. |
22 | Krasnoshchekov E A, Kuraeva I V, Protopopov V S. Local heat transfer of carbon dioxide at supercritical pressure under cooling conditions[J]. Teplofizika Vysokikh Temperature, 1970, 7(5): 922-930. |
23 | Kays W M, London A L, Eckert E R G. Compact heat exchangers[J]. Journal of Applied Mechanics, 1960, 27(2): 377. |
24 | Short B E, Raad P E, Price D C. Performance of pin fin cast aluminum coldwalls( 2): Colburn j-factor correlations[J]. Journal of Thermophysics and Heat Transfer, 2002, 16(3): 397-403. |
25 | 李巧巧, 陈儿同, 左志强, 等. 低温显微镜新冷源系统的实验研究[J]. 制冷学报, 2011, 32(3): 53-55, 59. |
Li Q Q, Chen E T, Zuo Z Q, et al. Experimental study on a new low-temperature system for cryomicroscope[J]. Journal of Refrigeration, 2011, 32(3): 53-55, 59. | |
26 | 叶萍, 常兆华, 赵庆孝, 等. 冷冻消融探针J-T节流制冷器降温特性的实验研究[J]. 制冷学报, 2012, 33(5): 74-78. |
Ye P, Chang Z H, Zhao Q X, et al. Experimental characterization of the Joule-Thomson cryostat of a cryoprobe[J]. Journal of Refrigeration, 2012, 33(5): 74-78. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[5] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[8] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[9] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[10] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[11] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[12] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[13] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[14] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[15] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||