CIESC Journal ›› 2021, Vol. 72 ›› Issue (4): 1939-1946.DOI: 10.11949/0438-1157.20201030
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
JIN Mo(),LIU Daoyin,CHEN Xiaoping()
Received:
2020-07-28
Revised:
2020-10-12
Online:
2021-04-05
Published:
2021-04-05
Contact:
CHEN Xiaoping
通讯作者:
陈晓平
作者简介:
金默(1996—),男,硕士研究生,基金资助:
CLC Number:
JIN Mo, LIU Daoyin, CHEN Xiaoping. Numerical simulation research of high-alkali coal ash deposition process based on discrete element method[J]. CIESC Journal, 2021, 72(4): 1939-1946.
金默, 刘道银, 陈晓平. 基于离散元方法的高碱煤灰沉积过程数值模拟研究[J]. 化工学报, 2021, 72(4): 1939-1946.
Add to citation manager EndNote|Ris|BibTeX
工况参数 | 数值 |
---|---|
颗粒质量流量/(kg/s) | 3.80×10-3 |
颗粒粒径/μm | 30/40/50/60 |
烟气成分(质量分数) | 5%O2/85%CO2/10%H2O |
烟气入口速度/(m/s) | 6/8/10/12 |
烟气温度/℃ | 700/750/800/850/900 |
积灰壁面温度/℃ | 500/550/600 |
Table 1 Parameters of simulated working conditions
工况参数 | 数值 |
---|---|
颗粒质量流量/(kg/s) | 3.80×10-3 |
颗粒粒径/μm | 30/40/50/60 |
烟气成分(质量分数) | 5%O2/85%CO2/10%H2O |
烟气入口速度/(m/s) | 6/8/10/12 |
烟气温度/℃ | 700/750/800/850/900 |
积灰壁面温度/℃ | 500/550/600 |
密度/(kg/m3) | 比热容/ (W/(kg·K)) | 热导率/ (kg·m2/s2) | 发射率 |
---|---|---|---|
3300 | 1000 | 0.33 | 0.6 |
Table 2 Particle property parameter
密度/(kg/m3) | 比热容/ (W/(kg·K)) | 热导率/ (kg·m2/s2) | 发射率 |
---|---|---|---|
3300 | 1000 | 0.33 | 0.6 |
文献 | 捕集率实验值/% | 捕集率模拟值/% |
---|---|---|
[ | 4.00 | 3.79 |
[ | 6.27 | 6.01 |
[ | 0.25 | 0.21 |
Table 3 Comparison between experimental results and simulated results
文献 | 捕集率实验值/% | 捕集率模拟值/% |
---|---|---|
[ | 4.00 | 3.79 |
[ | 6.27 | 6.01 |
[ | 0.25 | 0.21 |
烟气流速/(m/s) | 最大积灰厚度/mm | 积灰扩展角/(°) |
---|---|---|
6 | 2.78 | 138 |
8 | 2.76 | 137 |
10 | 2.64 | 135 |
12 | 2.60 | 134 |
Table 4 Deposition characteristics of particles under different gas velocity
烟气流速/(m/s) | 最大积灰厚度/mm | 积灰扩展角/(°) |
---|---|---|
6 | 2.78 | 138 |
8 | 2.76 | 137 |
10 | 2.64 | 135 |
12 | 2.60 | 134 |
壁面 温度/℃ | 碰撞率/% | 捕集率/% | 最大积灰 厚度/mm | 积灰扩展角/(°) | 积灰平均温度/℃ |
---|---|---|---|---|---|
500 | 74.24 | 1.87 | 2.72 | 134 | 513 |
550 | 74.25 | 2.09 | 2.79 | 138 | 560 |
600 | 74.27 | 2.24 | 2.88 | 142 | 605 |
Table 5 Deposition character of particles under different wall temperature
壁面 温度/℃ | 碰撞率/% | 捕集率/% | 最大积灰 厚度/mm | 积灰扩展角/(°) | 积灰平均温度/℃ |
---|---|---|---|---|---|
500 | 74.24 | 1.87 | 2.72 | 134 | 513 |
550 | 74.25 | 2.09 | 2.79 | 138 | 560 |
600 | 74.27 | 2.24 | 2.88 | 142 | 605 |
烟气 温度/℃ | 碰撞率/% | 捕集率/% | 最大积灰 厚度/mm | 积灰扩展角/(°) | 积灰平均温度/℃ |
---|---|---|---|---|---|
700 | 74.19 | 1.89 | 2.74 | 134 | 553 |
750 | 74.22 | 1.92 | 2.76 | 135 | 556 |
800 | 74.26 | 2.01 | 2.77 | 135 | 557 |
850 | 74.21 | 2.04 | 2.78 | 136 | 559 |
900 | 74.25 | 2.09 | 2.79 | 138 | 560 |
Table 6 Deposition character of particles under different gas temperature
烟气 温度/℃ | 碰撞率/% | 捕集率/% | 最大积灰 厚度/mm | 积灰扩展角/(°) | 积灰平均温度/℃ |
---|---|---|---|---|---|
700 | 74.19 | 1.89 | 2.74 | 134 | 553 |
750 | 74.22 | 1.92 | 2.76 | 135 | 556 |
800 | 74.26 | 2.01 | 2.77 | 135 | 557 |
850 | 74.21 | 2.04 | 2.78 | 136 | 559 |
900 | 74.25 | 2.09 | 2.79 | 138 | 560 |
1 | Li J, Zhuang X, Querol X, et al. Environmental geochemistry of the feed coals and their combustionby-products from two coal-fired power plants in Xinjiang Province, Northwest China[J]. Fuel, 2012, 95(95): 446-456. |
2 | Zhou J, Zhuang X, Alastuey A, et al. Geochemistryand mineralogy of coal in the recently explored Zhundong large coalfield in the Junggar basin, Xinjiang province, China [J]. Int. J. Coal Geol., 2010, 82(1/2): 51-67. |
3 | Eyk P J V, Ashman P J, Alwahabi Z T, et al. The release of water-bound and organic sodium from Loy Yang coal during the combustion of single particles in a flat flame[J]. Combustion & Flame, 2011, 158(6): 1181-1192. |
4 | 张志潮, 刘晶, 杨应举, 等. 燃煤锅炉烟气中Na2SO4生成的化学动力学研究[J]. 化工学报, 2018, 69(8): 3643-3650. |
Zhang Z C, Liu J, Yang Y J, et al. Study on chemical kinetics of Na2SO4 formation in coal fired flue gas [J]. CIESC Journal, 2018, 69(8): 3643-3650. | |
5 | Taha J T, Arthur F S, Kurt S, et al. CFD modeling of ash deposition for co-combustion of MBM with coal in a tangentially fired utility boiler[J]. Fuel Process. Technol., 2013, 114(114): 126-134. |
6 | Hui H, Ya L H, Wen Q T, et al. A parameter study of tube bundle heat exchangers for fouling rate reduction[J]. Interational Journal of Heat and Mass Transfer, 2014, 72: 210-221. |
7 | Hao Z, Kefa C, Sun P. Prediction of ash deposition in ash hopper when tilting burners are used[J]. Fuel Process. Technol., 2002, 79(2): 181-195. |
8 | Weiguo A, Kuhlman J M. Simulation of coal ash particle deposition experiments[J]. Mol. Cell Biol., 2011, 5(10): 2874-2877. |
9 | Weber R, Mancini M, Schaffel M N, et al. On predicting the ash behaviour using computational fluid dynamics[J]. Fuel Process. Technol., 2013, 105: 113-128. |
10 | García P M, Esa V, Timo H. Unsteady CFD analysis of kraft recovery boiler fly-ash trajectories, sticking efficiencies and deposition rates with a mechanistic particle rebound-stick model[J]. Fuel, 2016, 181: 408-420. |
11 | Mu L, Wang S, Zhai Z, et al. Unsteady CFD simulation on ash particle deposition and removal characteristics in tube banks: focusing on particle diameter, flow velocity, and temperature[J]. Journal of the Energy Institute, 2020, 93(4): 1481-1494. |
12 | Zhou H, Zhang K, Li Y, et al. Simulation of ash deposition in different furnace temperature with a 2D dynamic mesh model[J]. Journal of the Energy Institute, 2019, 92(6): 1743-1756. |
13 | Walsh P M, Sayre A N, Loehden D O, et al. Deposition of bituminous coal ash on an isolated heat exchanger tube: effects of coal properties on deposit growth[J]. Prog. Energy Combust. Sci., 1990, 16(4): 327-345. |
14 | Christoph W, Benjamin K, Gundula B, et al. Evaluation, comparison and validation of deposition criteria for numerical simulation of slagging[J]. Appl. Energy, 2012, 93(1): 184-192. |
15 | Marco L, Hartmut S, Jaap K. Ash deposition modeling using a visco-elastic approach[J]. Fuel, 2012, 102: 145-155. |
16 | Krzysztof W, Sylwester K. A practical numerical approach for prediction of particulate fouling in PC boilers[J]. Fuel, 2012, 97(7): 38-48. |
17 | 孙恒清, 盛昌栋. 含K成分形成初始沉积层的数学模型及烟气条件影响分析[J]. 化工学报, 2019, 70(9): 3495-3502. |
Sun H Q, Sheng C D. Model for the formation of initial deposited layer by K-containing species and influence analysis of flue gas conditions[J]. CIESC Journal, 2019, 70(9): 3495-3502. | |
18 | Xin Y, Derek I, Lin M, et al. Understanding the ash deposition formation in Zhundong lignite combustion through dynamic CFD modelling analysis[J]. Fuel, 2017, 194: 533-543. |
19 | Lee B E, Fletcher C A, Shin S, et al. Computational study of fouling deposit due to surface-coated particles in coal-fired power utility boilers[J]. Fuel, 2002, 81(15): 2001-2008 |
20 | Walsh P M, Sarofim A F, Beer J M. Fouling of convection heat exchangers by lignitic coal ash[J]. Energy Fuels, 1992, 6(6): 709-715. |
21 | Wibberley L J, Wall T F. Alkali-ash reactions and deposit formation in pulverized-coal-fired boilers: the thermodynamic aspects involving silica, sodium, sulphur and chlorine[J]. Fuel, 1982, 61(1): 87-92. |
22 | Wall S, John W, Wang H, et al. Measurements of kinetic energy loss for particles impacting surfaces[J]. Aerosol. Sci. Technol., 1990, 12(4): 926-946. |
23 | Liu C, Liu Z, Zhang T, et al. Numerical investigation on development of initial ash deposition layer for a high-alkali coal[J]. Energy & Fuels, 2017, 31(3): 2596-2606. |
24 | Hærvig J, Kleinhans U, Wieland C, et al. On the adhesive JKR contact and rolling models for reduced particle stiffness discrete element simulations[J]. Powder Technology, 2017, 319: 472-482. |
25 | 唐智, 陈晓平, 刘道银, 等. 流化床垃圾焚烧炉飞灰沉积实验[J]. 化工进展, 2020, 39(1): 387-394. |
Tang Z, Chen X P, Liu D Y, et al. Experimental investigation of ash deposition on heating surfaces in a municipal solid waste(MSW) bubbling fluidized beds [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 387-394. | |
26 | Luo K, Yang S, Fang M, et al. LES-DEM investigation of the solid transportation mechanism in a 3-D bubbling fluidized bed(Ⅰ): Hydrodynamics[J]. Powder Technology, 2014, 256(2): 385-394. |
27 | Liu D Y, Bu C S, Chen X P. Development and test of CFD-DEM model for complex geometry: a coupling algorithm for Fluent and DEM[J]. Computers & Chemical Engineering, 2013, 58: 260-268. |
28 | Tomas J. Adhesion of ultrafine particles—a micromechanical approach[J]. Chemical Engineering Science, 2007, 62(7): 1997-2010. |
29 | 王铮. 纳米颗粒聚团破碎、重组和凝并的数值模拟研究[D]. 南京: 东南大学, 2018. |
Wang Z. Numerical simulation of nanoparticle agglomerate breakage, restructuring, and coagulation[D]. Nanjing: Southeast University, 2018. | |
30 | Zbogar A, Frandsen F J, Jensen P A, et al. Heat transfer in ash deposits: a modelling tool-box[J]. Prog. Energy Combust. Sci., 2005, 31(5): 371-421. |
31 | Hong W, Wang B, Zheng J. Numerical study on the influence of fine particle deposition characteristics on wall roughness[J]. Powder Technology, 2020, 360: 120-128. |
32 | Liu Z, Li J, Zhu M, et al. An experimental investigation into the effect of flue gas recirculation on ash deposition and Na migration behaviour in circulating fluidized bed during combustion of high sodium Zhundong lignite[J]. Fuel Process. Technol., 2020, 199: 106-300. |
33 | Weber R, Schaffel-Mancini N, Mancini M, et al. Fly ash deposition modelling: requirements for accurate predictions of particle impaction on tubes using RANS-based computational fluid dynamics[J]. Fuel, 2013, 108: 586-596. |
34 | Wessel R A, Righi J. Generalized correlations for inertial impaction of particles on a circular cylinder[J]. Aerosol Science and Technology, 1988, 9(1): 29-60. |
35 | Li G, Li S, Huang Q, et al. Fine particulate formation and ash deposition during pulverized coal combustion of high-sodium lignite in a down-fired furnace[J]. Fuel, 2015, 143(44): 430-437. |
36 | Zhou H, Jensen P A, Frandsen F J. Dynamic mechanistic model of superheater deposit growth and shedding in a biomass fired grate boiler[J]. Fuel, 2007, 86(10/11): 1519-1533. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||