CIESC Journal ›› 2021, Vol. 72 ›› Issue (1): 276-291.DOI: 10.11949/0438-1157.20201131
• Reviews and monographs • Previous Articles Next Articles
WU Peiwen1(),XUN Suhang2,JIANG Wei3,LI Huaming3,ZHU Wenshuai1()
Received:
2020-08-10
Revised:
2020-11-26
Online:
2021-01-05
Published:
2021-01-05
Contact:
ZHU Wenshuai
通讯作者:
朱文帅
作者简介:
吴沛文(1990—),男,博士,讲师,基金资助:
CLC Number:
WU Peiwen, XUN Suhang, JIANG Wei, LI Huaming, ZHU Wenshuai. Recent progress on extractive desulfurization of fuel oils through reactions based on ionic liquids as solvents and catalysts[J]. CIESC Journal, 2021, 72(1): 276-291.
吴沛文, 荀苏杭, 蒋伟, 李华明, 朱文帅. 离子液体反应型萃取燃油脱硫研究进展[J]. 化工学报, 2021, 72(1): 276-291.
序号 | 离子液体 | 硫化物类型 | 萃取剂/催化剂 | 文献 |
---|---|---|---|---|
1 | [(C8H17)3NCH3]2[W6O19] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
2 | [(C4H9)4N]4[W10O32] | DBT, 4,6-DMDBT, BT | 萃取剂/催化剂 | [ |
3 | [PSPy]3[PW12O40] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
4 | [MIMPS]3[PW12O40]·2H2O | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
5 | [VO(O2)2(phen)]·H2O | DBT | 催化剂 | [ |
6 | [WO(O2)2]·[2C3H7NO2]·H2O | DBT | 催化剂 | [ |
7 | [PyPS]3[(NH4)3Mo7O24] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
8 | [(CH3)N(n-C8H17)3]2[Mo2O11] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
9 | [(CH3)4N][FeCl4] | DBT | 催化剂 | [ |
10 | [Ch][FeCl4] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
11 | [C4mpip][FeCl4] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
12 | [C4mim]3[Fe(CN)6] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
13 | [C83MPy][FeCl4] | DBT | 萃取剂/催化剂 | [ |
14 | [Me3NCH2C6H5Cl]·[2ZnCl2] | DBT | 萃取剂/催化剂 | [ |
Table 1 Ionic liquids for reactive extraction desulfurization using activated H2O2 as the oxidant
序号 | 离子液体 | 硫化物类型 | 萃取剂/催化剂 | 文献 |
---|---|---|---|---|
1 | [(C8H17)3NCH3]2[W6O19] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
2 | [(C4H9)4N]4[W10O32] | DBT, 4,6-DMDBT, BT | 萃取剂/催化剂 | [ |
3 | [PSPy]3[PW12O40] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
4 | [MIMPS]3[PW12O40]·2H2O | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
5 | [VO(O2)2(phen)]·H2O | DBT | 催化剂 | [ |
6 | [WO(O2)2]·[2C3H7NO2]·H2O | DBT | 催化剂 | [ |
7 | [PyPS]3[(NH4)3Mo7O24] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
8 | [(CH3)N(n-C8H17)3]2[Mo2O11] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
9 | [(CH3)4N][FeCl4] | DBT | 催化剂 | [ |
10 | [Ch][FeCl4] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
11 | [C4mpip][FeCl4] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
12 | [C4mim]3[Fe(CN)6] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
13 | [C83MPy][FeCl4] | DBT | 萃取剂/催化剂 | [ |
14 | [Me3NCH2C6H5Cl]·[2ZnCl2] | DBT | 萃取剂/催化剂 | [ |
序号 | 离子液体 | 硫化物类型 | 萃取剂/催化剂 | 文献 |
---|---|---|---|---|
1 | [Bmim][BF4] | DBT, 4,6-DMDBT, 4-MDBT | 萃取剂 | [ |
2 | [C18H37N(CH3)3]5[PV2Mo10O40] | DBT | 催化剂 | [ |
3 | [(C18H37)2N(CH3)2]3[Co(OH)6Mo6O18]·3H2O | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
4 | [Cnmim]3[H3V10O28] | DBT, 4-MDBT, 4,6-DMDBT | 催化剂 | [ |
5 | [(C8H17)3NCH3]3[PMo12O40] | DBT, 4-MDBT, 4,6-DMDBT | 催化剂 | [ |
6 | [(C8H17)3NCH3]3[H3V10O28] | DBT, 4-MDBT, 4,6-DMDBT | 催化剂 | [ |
7 | [C4VIM][PMoV] | DBT, 4-MDBT, 4,6-DMDBT | 催化剂 | [ |
8 | [PyPS]3[Co(OH)6Mo6O18] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
9 | [(NH4)3Co(OH)6][Mo6O18] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
10 | [(CH3)3NCH2CH2OH]x[Na5-xIMo6O24] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
Table 2 Ionic liquids for reactive extraction desulfurization using activated O2 as the oxidant
序号 | 离子液体 | 硫化物类型 | 萃取剂/催化剂 | 文献 |
---|---|---|---|---|
1 | [Bmim][BF4] | DBT, 4,6-DMDBT, 4-MDBT | 萃取剂 | [ |
2 | [C18H37N(CH3)3]5[PV2Mo10O40] | DBT | 催化剂 | [ |
3 | [(C18H37)2N(CH3)2]3[Co(OH)6Mo6O18]·3H2O | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
4 | [Cnmim]3[H3V10O28] | DBT, 4-MDBT, 4,6-DMDBT | 催化剂 | [ |
5 | [(C8H17)3NCH3]3[PMo12O40] | DBT, 4-MDBT, 4,6-DMDBT | 催化剂 | [ |
6 | [(C8H17)3NCH3]3[H3V10O28] | DBT, 4-MDBT, 4,6-DMDBT | 催化剂 | [ |
7 | [C4VIM][PMoV] | DBT, 4-MDBT, 4,6-DMDBT | 催化剂 | [ |
8 | [PyPS]3[Co(OH)6Mo6O18] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
9 | [(NH4)3Co(OH)6][Mo6O18] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
10 | [(CH3)3NCH2CH2OH]x[Na5-xIMo6O24] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
1 | 苗广, 董磊, 任晓玲, 等. 燃油吸附脱硫研究进展[J]. 化工进展, 2020, 39(6): 2251-2261. |
Miao G, Dong L, Ren X L, et al. An overview on adsorptive desulfurization of fuels [J]. Chem. Ind. Eng. Progress, 2020, 39(6): 2251-2261. | |
2 | Zhang W, Zhang H, Xiao J, et al. Carbon nanotube catalysts for oxidative desulfurization of a model diesel fuel using molecular oxygen[J]. Green Chem., 2014, 16(1): 211-220. |
3 | Yang R T, Hernandez-Maldonado A J, Yang F H. Desulfurization of transportation fuels with zeolites under ambient conditions[J]. Science, 2003, 301(5629): 79-81. |
4 | Babich I V, Moulijn J A. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review[J]. Fuel, 2003, 82(6): 607-631. |
5 | Ahmed I, Jhung S H. Adsorptive desulfurization and denitrogenation using metal-organic frameworks[J]. J. Hazard. Mater., 2016, 301: 259-276. |
6 | Bösmann A, Datsevich L, Jess A, et al. Deep desulfurization of diesel fuel by extraction with ionic liquids[J]. Chem. Commun., 2001, 23: 2494-2495. |
7 | 王玉新, 李丹东, 曹祖宾, 等. 室温氯铝酸离子液体络合吸附噻吩类硫化物的研究[J]. 石油化工高等学校学报, 2004, 17(4): 54-57. |
Wang Y X, Li D D, Cao Z B, et al. Complex adsorption thiophene sulfide using room -temperature aluminum chloride-based ionic liquids [J]. J. Petrol. Univ., 2004, 17(4): 54-57. | |
8 | 王玉新, 李丹东, 袁秋菊. 室温离子液体对噻吩硫化物的络合吸附工艺[J]. 辽宁化工, 2004, 33(9): 512-514. |
Wang Y X, Li D D, Yuan Q J. study on complexing adsorption removal thiophene sulfide using room - temperature ionic liquids [J]. Liaoning Chem. Ind., 2004, 33(9): 512-514. | |
9 | 张姝妍, 曹祖宾, 赵德智, 等. 室温离子液体对FCC汽油络合萃取脱硫的研究[J]. 炼油技术与工程, 2005, 35(5): 35-38. |
Zhang Z Y, Cao Z B, Zhao D Z, et al. Study on FCC naphtha desulfurization with complexing extraction and room temperature ionic liquid [J]. Petrol. Refinery Eng., 2005, 35(5): 35-38. | |
10 | Weng J, Wang C, Li H, et al. Novel quaternary ammonium ionic liquids and their use as dual solvent-catalysts in the hydrolytic reaction[J]. Green Chem., 2006, 8(1): 96-99. |
11 | 张傑, 黄崇品, 陈标华, 等. 用 [BMIM][Cu2Cl3] 离子液体萃取脱除汽油中的硫化物[J]. 燃料化学学报, 2005, 33(4): 431-434. |
Zhang J, Huang C P, Chen B H, et al. Extractive desulfurization from gasoline by [BMIM][Cu2Cl3] [J]. J. Fuel. Chem. Technol., 2005, 33(4): 431-434. | |
12 | 张成中, 黄崇品, 李建伟, 等. 离子液体的结构及其汽油萃取脱硫性能[J]. 化学研究, 2005, 16(1): 23-25. |
Zhang C Z, Huang C P, Li J W, et al. Structures and extractive desulfurization ability of ionic liquids[J]. Chemical Research, 2005, 16(1): 23-25. | |
13 | Huang C, Chen B, Zhang J, et al. Desulfurization of gasoline by extraction with new ionic liquids[J]. Energy & Fuels, 2004, 18(6): 1862-1864. |
14 | 黄蔚霞, 李云龙, 汪燮卿. 离子液体在催化裂化汽油脱硫中的应用[J]. 化工进展, 2004, 23(3): 297-299. |
Huang W X, Li Y L, Wang X Q. Reducing sulfur content in FCC naphtha by using ionic liquid [J]. Chem. Ind. Eng. Progress, 2004, 23(3): 297-299. | |
15 | Zhang S, Zhang Q, Zhang Z C. Extractive desulfurization and denitrogenation of fuels using ionic liquids[J]. Ind. Eng. Chem. Res., 2004, 43(2): 614-622. |
16 | 周瀚成, 陈楠, 石峰, 等. 离子液体萃取脱硫新工艺研究[J]. 分子催化, 2005, 19(2): 94-97. |
Zhou H C, Chen N, Shi F, et al. Studies on desulfurization of gasoline by extracting with ionic liquids [J]. J. Mol. Catal. (China), 2005, 19(2): 94-97. | |
17 | Jess A, Eβer J. Deep Desulfurization of Fuels by Extraction with Ionic Liquids[M]. ACS Publications, 2005. |
18 | Eßer J, Wasserscheid P, Jess A. Deep desulfurization of oil refinery streams by extraction with ionic liquids[J]. Green Chem., 2004, 6(7): 316-322. |
19 | Planeta J, Karásek P, Roth M. Distribution of sulfur-containing aromatics between [hmim][Tf2N] and supercritical CO2: a case study for deep desulfurization of oil refinery streams by extraction with ionic liquids[J]. Green Chem., 2006, 8(1): 70-77. |
20 | Jiang X, Nie Y, Li C, et al. Imidazolium-based alkylphosphate ionic liquids—a potential solvent for extractive desulfurization of fuel[J]. Fuel, 2008, 87(1): 79-84. |
21 | Lo W H, Yang H Y, Wei G T. One-pot desulfurization of light oils by chemical oxidation and solvent extraction with room temperature ionic liquids[J]. Green Chem., 2003, 5(5): 639-642. |
22 | Zhang S, Zhang J, Zhang Y, et al. Nanoconfined ionic liquids[J]. Chem. Rev., 2017, 117(10): 6755-6833. |
23 | Zhang X, Liu C, Ren Q, et al. Green chemical engineering in China[J]. Rev. Chem. Eng., 2019, 35(8): 995-1077. |
24 | 崔国凯, 吕书贞, 王键吉. 功能化离子液体在二氧化碳吸收分离中的应用[J]. 化工学报, 2020, 71(1): 16-25. |
Cui G K, Lyu S Z, Wang J J. Functional ionic liquids for carbon dioxide capture and separation [J]. CIESC Journal, 2020, 71(1): 16-25. | |
25 | Qian W, Tan X, Su Q, et al. Transesterification of isosorbide with dimethyl carbonate catalyzed by task-specific ionic liquids[J]. ChemSusChem, 2019, 12(6): 1169-1178. |
26 | 李萌, 刘宇, 王强, 等. 离子液体合成研究进展[J]. 化工时刊, 2011, 25(5): 44-49+63. |
Li M, Liu Y, Wang Q, et al. Synthesis progress of ionic liquids [J]. Chem. Ind. Times, 2011, 25(5): 44-49+63. | |
27 | Singh S K, Savoy A W. Ionic liquids synthesis and applications: an overview[J]. J. Mol. Liq., 2020, 297: 112038. |
28 | Zhu W, Ding Y, Li H, et al. Application of a self-emulsifiable task-specific ionic liquid in oxidative desulfurization of fuels[J]. RSC Adv., 2013, 3(12): 3893-3898. |
29 | Li M, Zhou Z, Zhang F, et al. Deep oxidative-extractive desulfurization of fuels using benzyl‐based ionic liquid[J]. AIChE J., 2016, 62(11): 4023-4034. |
30 | Xu J, Zhao S, Chen W, et al. Highly efficient extraction and oxidative desulfurization system using Na7H2LaW10O36·32H2O in bmim BF4 at room temperature[J]. Chem. Eur. J., 2012, 18(15): 4775-4781. |
31 | Guo Y F, Gao C Y, Yang K G, et al. Mild and deep oxidative extraction desulfurization using dual-function imidazolium peroxydisulfate ionic liquid[J]. Energy & Fuels, 2019, 33(11): 10728-10733. |
32 | Lissner E, de Souza W F, Ferrera B, et al. Oxidative desulfurization of fuels with task-specific ionic liquids[J]. ChemSusChem, 2009, 2(10): 962-964. |
33 | Yu F L, Wang Y Y, Liu C Y, et al. Oxidative desulfurization of fuels catalyzed by ammonium oxidative-thermoregulated bifunctional ionic liquids[J]. Chem. Eng. J., 2014, 255: 372-376. |
34 | Ding Y X, Zhu W S, Li H M, et al. Catalytic oxidative desulfurization with a hexatungstate/aqueous H2O2/ionic liquid emulsion system[J]. Green Chem., 2011, 13(5): 1210-1216. |
35 | Li H M, Jiang X, Zhu W H, et al. Deep oxidative desulfurization of fuel oils catalyzed by decatungstates in the ionic liquid of Bmim PF6[J]. Ind. Eng. Chem. Res., 2009, 48(19): 9034-9039. |
36 | Huang W, Zhu W, Li H, et al. Heteropolyanion-based ionic liquid for deep desulfurization of fuels in ionic liquids[J]. Ind. Eng. Chem. Res., 2010, 49(19): 8998-9003. |
37 | Zhu W S, Huang W L, Li H M, et al. Polyoxometalate-based ionic liquids as catalysts for deep desulfurization of fuels[J]. Fuel Process. Technol., 2011, 92(10): 1842-1848. |
38 | 朱文帅, 徐丹, 巢艳红, 等. 离子液体萃取耦合过氧钒配合物催化氧化燃油脱硫[J]. 石油化工, 2011, 40(8): 810-812. |
Zhu W S, Xu D, Chao Y H, et al. Oxidative desulfurization of fuel catalyzed by peroxovanadium complex in ionic liquids as extractants [J]. Petrochem. Technol., 2011, 40(8): 810-812. | |
39 | 朱文帅, 巢艳红, 李华明, 等. 离子液体中过氧钨配合物催化氧化燃油脱硫[J]. 化学研究与应用, 2011, 23(10): 1309-1312. |
Zhu W S, Chao Y H, Li H M, et al. Oxidative desulfurization of fuels catalyzed by peroxotungsten complex in ionic liquids [J]. Chem. Res. Appl., 2011, 23(10): 1309-1312. | |
40 | Hao L W, Sun L L, Su T, et al. Polyoxometalate-based ionic liquid catalyst with unprecedented activity and selectivity for oxidative desulfurization of diesel in OminBF4[J]. Chem. Eng. J., 2019, 358: 419-426. |
41 | Zhu W S, Zhu G P, Li H M, et al. Oxidative desulfurization of fuel catalyzed by metal-based surfactant-type ionic liquids[J]. J. Mol. Catal. A: Chem., 2011, 347(1/2): 8-14. |
42 | Jiang W, Zhu W, Li H, et al. Deep oxidative desulfurization of fuels catalyzed by magnetic Fenton-like hybrid catalysts in ionic liquids[J]. RSC Adv., 2013, 3(7): 2355-2361. |
43 | Jiang W, Zhu W S, Li H M, et al. Mechanism and optimization for oxidative desulfurization of fuels catalyzed by Fenton-like catalysts in hydrophobic ionic liquid[J]. J. Mol. Catal. A: Chem., 2014, 382: 8-14. |
44 | Jiang W, Zhu W S, Chang Y H, et al. Ionic liquid extraction and catalytic oxidative desulfurization of fuels using dialkylpiperidinium tetrachloroferrates catalysts[J]. Chem. Eng. J., 2014, 250: 48-54. |
45 | Jiang W, Zhu W, Chang Y H, et al. Oxidation of aromatic sulfur compounds catalyzed by organic hexacyanoferrates in ionic liquids with a low concentration of H2O2 as an oxidant[J]. Energy & Fuels., 2014, 28(4): 2754-2760. |
46 | Nie Y, Dong Y, Bai L, et al. Fast oxidative desulfurization of fuel oil using dialkylpyridinium tetrachloroferrates ionic liquids[J]. Fuel, 2013, 103: 997-1002. |
47 | Li F T, Liu R H, Wen J H, et al. Desulfurization of dibenzothiophene by chemical oxidation and solvent extraction with Me3NCH2C6H5Cl·2ZnCl2 ionic liquid[J]. Green Chem., 2009, 11(6): 883-888. |
48 | Zhu W, Li H, Jiang X, et al. Commercially available molybdic compound-catalyzed ultra-deep desulfurization of fuels in ionic liquids[J]. Green Chem., 2008, 10(6): 641-646. |
49 | Zhu W, Li H, Hang X, et al. Oxidative desulfurization of fuels catalyzed by peroxotungsten and peroxomolybdenum complexes in ionic liquids[J]. Energy & Fuels, 2007, 21(5): 2514-2516. |
50 | He L N, Li H M, Zhu W S, et al. Deep oxidative desulfurization of fuels using peroxophosphomolybdate catalysts in ionic liquids[J]. Ind. Eng. Chem. Res., 2008, 47(18): 6890-6895. |
51 | Li H M, He L N, Lu J D, et al. Deep oxidative desulfurization of fuels catalyzed by phosphotungstic acid in ionic liquids at room temperature[J]. Energy & Fuels, 2009, 23: 1354-1357. |
52 | Jiang W, Jia H, Zheng Z, et al. Catalytic oxidative desulfurization of fuels in acidic deep eutectic solvents with [(C6H13)3P(C14H29)]3PMo12O40 as a catalyst[J]. Petrol. Sci., 2018, 4(15): 890-897. |
53 | Zhang H, Gao J, Meng H, et al. Removal of thiophenic sulfurs using an extractive oxidative desulfurization process with three new phosphotungstate catalysts[J]. Ind. Eng. Chem. Res., 2012, 51(19): 6658-6665. |
54 | Zhang J, Zhu W, Li H, et al. Deep oxidative desulfurization of fuels by Fenton-like reagent in ionic liquids[J]. Green Chem., 2009, 11(11): 1801-1807. |
55 | Li H, Zhu W, Wang Y, et al. Deep oxidative desulfurization of fuels in redox ionic liquids based on iron chloride[J]. Green Chem., 2009, 11(6): 810-815. |
56 | Jiang Y, Zhu W, Li H, et al. Oxidative desulfurization of fuels catalyzed by fenton-like ionic liquids at room temperature[J]. ChemSusChem, 2011, 4(3): 399-403. |
57 | Zhu W, Wu P, Yang L, et al. Pyridinium-based temperature-responsive magnetic ionic liquid for oxidative desulfurization of fuels[J]. Chem. Eng. J., 2013, 229: 250-256. |
58 | Zhao D, Wang J, Zhou E. Oxidative desulfurization of diesel fuel using a Bronsted acid room temperature ionic liquid in the presence of H2O2[J]. Green Chem., 2007, 9(11): 1219-1222. |
59 | Gao H S, Guo C, Xing J M, et al. Extraction and oxidative desulfurization of diesel fuel catalyzed by a Bronsted acidic ionic liquid at room temperature[J]. Green Chem., 2010, 12(7): 1220-1224. |
60 | 赵地顺, 孙智敏, 李发堂, 等. 酸性离子液体萃取/催化二苯并噻吩氧化脱硫反应的优化[J]. 燃料化学学报, 2009, 37(2): 68-72. |
Zhao D S, Sun M Z, Li F T, et al. Optimization of oxidative desulfurization of dibenzothiophen using acidic ionic liquid as catalytic solvent [J]. J. Fuel Chem. Technol., 2009, 37(2): 68-72. | |
61 | 张薇, 丁永萍, 宫敬, 等. 羧基功能化离子液体催化二苯并噻吩氧化脱硫[J]. 燃料化学学报, 2012, 40(5): 626-629. |
Zhang W, Ding Y P, Gong J, et al. Oxidative desulfurization of dibenzothiophene catalyzed by carboxyl-functionalized ionic liquid [cmmim] BF4 [J]. J. Fuel Chem. Technol., 2012, 40(5): 626-629. | |
62 | Lu Y, Wang Y, Gao L, et al. Aerobic oxidative desulfurization: a promising approach for sulfur removal from fuels[J]. ChemSusChem, 2008, 1(4): 302-306. |
63 | Dong Y, Zhang J, Ma Z, et al. Preparation of Co-Mo-O ultrathin nanosheets with outstanding catalytic performance in aerobic oxidative desulfurization[J]. Chem. Commun., 2019, 55(93): 13995-13998. |
64 | Yang H, Zhang Q, Zhang J, et al. Cellulose nanocrystal shelled with poly(ionic liquid)/polyoxometalate hybrid as efficient catalyst for aerobic oxidative desulfurization[J]. J. Colloid. Interface Sci., 2019, 554: 572-579. |
65 | Wang C, Chen Z, Yao X, et al. One-pot extraction and aerobic oxidative desulfurization with highly dispersed V2O5/SBA-15 catalyst in ionic liquids[J]. RSC Adv., 2017, 7(62): 39383-39390. |
66 | Lü H Y, Gao J B, Jiang Z X, et al. Oxidative desulfurization of dibenzothiophene with molecular oxygen using emulsion catalysis[J]. Chem. Commun., 2007, 2: 150-152. |
67 | Lü H Y, Ren W Z, Liao W P, et al. Aerobic oxidative desulfurization of model diesel using a B-type Anderson catalyst [(C18H37)2N(CH3)2]3Co(OH)6Mo6O18·3H2O[J]. Appl. Catal. B: Environ., 2013, 138: 79-83. |
68 | Wang C, Chen Z G, Yao X Y, et al. Decavanadates anchored into micropores of graphene-like boron nitride: efficient heterogeneous catalysts for aerobic oxidative desulfurization[J]. Fuel, 2018, 230: 104-112. |
69 | Xun S H, Jiang W, Guo T, et al. Magnetic mesoporous nanospheres supported phosphomolybdate-based ionic liquid for aerobic oxidative desulfurization of fuel[J]. J. Colloid Interface Sci., 2019, 534: 239-247. |
70 | Gu J Y, Liu M G, Xun S H, et al. Lipophilic decavanadate supported by three-dimensional porous carbon nitride catalyst for aerobic oxidative desulfurization[J]. Mol. Catal., 2020, 483: 110709. |
71 | Zhang M, Liu J Q, Li H P, et al. Tuning the electrophilicity of vanadium-substituted polyoxometalate based ionic liquids for high-efficiency aerobic oxidative desulfurization[J]. Appl. Catal. B: Environ., 2020, 271: 118936. |
72 | Chi M Y, Su T, Sun L L, et al. Biomimetic oxygen activation and electron transfer mechanism for oxidative desulfurization[J]. Appl. Catal. B: Environ., 2020, 275: 119134. |
73 | Sun L, Su T, Xu J, et al. Aerobic oxidative desulfurization coupling of Co polyanion catalysts and p-TsOH-based deep eutectic solvents through a biomimetic approach[J]. Green Chem., 2019, 21(10): 2629-2634. |
74 | Yu X, Shi M, Yan S, et al. Designation of choline functionalized polyoxometalates as highly active catalysts in aerobic desulfurization on a combined oxidation and extraction procedure[J]. Fuel, 2017, 207: 13-21. |
75 | Sun L L, Su T, Li P C, et al. Extraction coupled with aerobic oxidative desulfurization of model diesel using a B-type Anderson polyoxometalate catalyst in ionic liquids[J]. Catal. Lett., 2019, 149(7): 1888-1893. |
76 | Li A, Song H Y, Meng H, et al. Ultrafast desulfurization of diesel oil with ionic liquid based PMoO catalysts and recyclable NaClO oxidant[J]. Chem. Eng. J., 2020, 380: 122453. |
77 | Wang J L, Zhao D S, Li K X. Oxidative desulfurization of dibenzothiophene using ozone and hydrogen peroxide in ionic liquid[J]. Energy & Fuels, 2010, 24: 2527-2529. |
78 | Ma C H, Dai B, Liu P, et al. Deep oxidative desulfurization of model fuel using ozone generated by dielectric barrier discharge plasma combined with ionic liquid extraction[J]. J. Ind. Eng. Chem., 2014, 20(5): 2769-2774. |
79 | Zhao D, Liu R, Wang J, et al. Photochemical oxidation-ionic liquid extraction coupling technique in deep desulphurization of light oil[J]. Energy & Fuels, 2008, 22(2): 1100-1103. |
80 | Zhu W, Xu Y, Li H, et al. Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO2 in ionic liquid[J]. Korean J. Chem. Eng., 2014, 31(2): 211-217. |
81 | Zhu W, Wang C, Li H, et al. One-pot extraction combined with metal-free photochemical aerobic oxidative desulfurization in deep eutectic solvent[J]. Green Chem., 2015, 17(4): 2464-2472. |
82 | Liu R, Zhang J, Xu Z, et al. Visible light photocatalytic oxidative desulfurization using Ti-MCM-41-loaded iron phthalocyanine combined with ionic liquid extraction[J]. J. Mater. Sci., 2018, 53(7): 4927-4938. |
83 | Mesdour S, Lekbir C, Doumandji L, et al. Microwave-assisted extractive catalytic-oxidative desulfurization of diesel fuel via a VO(acac)2/ionic liquid system with H2O2 and H2SO4 as oxidizing agents[J]. J. Sulfur Chem., 2017, 38(4): 421-439. |
84 | Benmabrouka H, Mesdour S, Boufades D, et al. Vanadium-catalyzed extractive oxidesulfurization of commercial diesel in ionic liquid with combined oxidizing agents[J]. Petrol. Sci. Technol., 2019, 37(6): 662-670. |
85 | Coletti A, Sabuzi F, Floris B, et al. Efficient and sustainable V-catalyzed oxidative desulfurization of fuels assisted by ionic liquids[J]. J. Fuel Chem. Technol., 2018, 46(9): 1121-1129. |
86 | Khodaei B, Rahimi M, Sobati M A, et al. Effect of operating pressure on the performance of ultrasound-assisted oxidative desulfurization (UAOD) using a horn type sonicator: experimental investigation and CFD simulation[J]. Chem. Eng. Process., 2018, 132: 75-88. |
87 | 解从霞, 谢盼辉, 于凤丽, 等. 有机-无机杂多酸类离子液体催化汽油超声氧化脱硫[J]. 高等学校化学学报, 2016, 37(12): 2184-2190. |
Xie C X, Xie P H, Yu F L, et al. Oxidative desulfurization of gasoline catalyzed by organic-inorganic heteropoly acid ionic liquids under ultrasound [J]. Chem. J. Chinese Univ., 2016, 37(12): 2184-2190. | |
88 | Cheng S S. Ultra clean fuels via modified UAOD process with room temperature ionic liquid (RTIL) & solid catalyst polishing[D]. Los Angeles: University of Southern California, 2008. |
89 | Safa M, Mokhtarani B, Mortaheb H R, et al. Oxidative desulfurization of model diesel using ionic liquid 1-octyl-3-methylimidazolium hydrogen sulfate: an investigation of the ultrasonic irradiation effect on performance[J]. Energy & Fuels, 2016, 30(12): 10909-10916. |
90 | 胡亚一, 陈嘉磊, 刘琦, 等. 杂多酸离子液体负载氨基化Fe3O4 磁性复合材料的制备及其超声辅助催化脱硫性能[J]. 复合材料学报, 2020, 37(3): 650-661. |
Hu Y Y, Chen J L, Liu Q, et al. Preparation of heteropoly acid ionic liquids supported amino-functionalized Fe3O4 magnetic composite and its catalytic property for ultrasound-assisted desulfurization [J]. Acta Materiae Compositae Sinica, 2020, 37(3): 650-661. | |
91 | Rajendran A, Cui T-Y, Fan H-X, et al. A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment[J]. J. Mater. Chem. A, 2020, 8(5): 2246-2285. |
92 | Mohumed H, Rahman S, Imtiaz S A, et al. Oxidative-extractive desulfurization of model fuels using a pyridinium ionic liquid[J]. ACS Omega, 2020, 5(14): 8023-8031. |
93 | Jiang W, Zhu W, Li H, et al. Fast oxidative removal of refractory aromatic sulfur compounds by a magnetic ionic liquid[J]. Chem. Eng. Technol., 2014, 37(1): 36-42. |
94 | Zhu W, Wu P, Chao Y, et al. A novel reaction-controlled foam-type polyoxometalate catalyst for deep oxidative desulfurization of fuels[J]. Ind. Eng. Chem. Res., 2013, 52(49): 17399-17406. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[3] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[4] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[5] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[6] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[7] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[8] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[9] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[10] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[11] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[12] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[13] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[14] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[15] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 408
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 828
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||