CIESC Journal ›› 2021, Vol. 72 ›› Issue (4): 1975-1986.DOI: 10.11949/0438-1157.20201151
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
YANG Fengling1,2,3(),CAO Mingjian4,ZHANG Cuixun4,LIU Xin1
Received:
2020-08-11
Revised:
2020-09-17
Online:
2021-04-05
Published:
2021-04-05
Contact:
YANG Fengling
通讯作者:
杨锋苓
作者简介:
杨锋苓(1979—),男,博士,副教授,基金资助:
CLC Number:
YANG Fengling, CAO Mingjian, ZHANG Cuixun, LIU Xin. Vibration characteristics of the flexible-blade Rushton impeller[J]. CIESC Journal, 2021, 72(4): 1975-1986.
杨锋苓, 曹明见, 张翠勋, 刘欣. 柔性Rushton搅拌桨的振动特性[J]. 化工学报, 2021, 72(4): 1975-1986.
Add to citation manager EndNote|Ris|BibTeX
搅拌 介质 | 密度ρ/ (kg·m-3) | 黏度μ/ (Pa·s) | 转速N/ s-1 | Reynolds数 (Re=ρNd2/μ) |
---|---|---|---|---|
水 | 998.20 | 0.001 | 1~5 | 22500~112500 |
70%甘油 | 1183.77 | 0.023 | 2 | 2367 |
80%甘油 | 1210.28 | 0.060 | 2 | 906 |
90%甘油 | 1236.79 | 0.219 | 2 | 254 |
100%甘油 | 1263.30 | 1.412 | 2 | 40 |
Table 1 Fluid physical parameters, impeller rotational speed and Reynolds number
搅拌 介质 | 密度ρ/ (kg·m-3) | 黏度μ/ (Pa·s) | 转速N/ s-1 | Reynolds数 (Re=ρNd2/μ) |
---|---|---|---|---|
水 | 998.20 | 0.001 | 1~5 | 22500~112500 |
70%甘油 | 1183.77 | 0.023 | 2 | 2367 |
80%甘油 | 1210.28 | 0.060 | 2 | 906 |
90%甘油 | 1236.79 | 0.219 | 2 | 254 |
100%甘油 | 1263.30 | 1.412 | 2 | 40 |
网格密度 | 网格尺寸 | 网格数量/个 | 网格质量 | |
---|---|---|---|---|
静子 | 转子 | |||
coarse | 5 | 4 | 458811 | 0.86 |
medium | 4 | 3 | 950124 | 0.89 |
fine | 3.8 | 2.8 | 1142299 | 0.89 |
Table 2 Grids of the fluid zones
网格密度 | 网格尺寸 | 网格数量/个 | 网格质量 | |
---|---|---|---|---|
静子 | 转子 | |||
coarse | 5 | 4 | 458811 | 0.86 |
medium | 4 | 3 | 950124 | 0.89 |
fine | 3.8 | 2.8 | 1142299 | 0.89 |
阶数 | 干模态频率/Hz | 湿模态频率/Hz | 下降比例/% |
---|---|---|---|
1 | 24.811 | 24.210 | 2.42 |
2 | 24.811 | 24.211 | 2.42 |
3 | 24.811 | 24.218 | 2.39 |
4 | 24.812 | 24.232 | 2.34 |
5 | 24.812 | 24.244 | 2.29 |
6 | 24.812 | 24.253 | 2.25 |
7 | 84.536 | 82.707 | 2.16 |
8 | 84.536 | 82.720 | 2.15 |
9 | 84.536 | 82.742 | 2.12 |
10 | 84.536 | 82.745 | 2.12 |
11 | 84.536 | 82.771 | 2.09 |
12 | 84.537 | 82.804 | 2.05 |
13 | 150.280 | 149.580 | 0.47 |
14 | 150.280 | 149.600 | 0.45 |
15 | 150.380 | 149.690 | 0.46 |
16 | 150.420 | 149.730 | 0.46 |
17 | 150.420 | 149.730 | 0.46 |
18 | 150.420 | 149.750 | 0.45 |
19 | 189.540 | 189.500 | 0.02 |
20 | 189.540 | 189.500 | 0.02 |
21 | 190.050 | 190.010 | 0.02 |
22 | 190.290 | 190.250 | 0.02 |
23 | 190.290 | 190.250 | 0.02 |
24 | 190.590 | 190.560 | 0.02 |
Table 3 The numerically obtained dry-modal and wet-modal natural frequency of the shaft and impeller
阶数 | 干模态频率/Hz | 湿模态频率/Hz | 下降比例/% |
---|---|---|---|
1 | 24.811 | 24.210 | 2.42 |
2 | 24.811 | 24.211 | 2.42 |
3 | 24.811 | 24.218 | 2.39 |
4 | 24.812 | 24.232 | 2.34 |
5 | 24.812 | 24.244 | 2.29 |
6 | 24.812 | 24.253 | 2.25 |
7 | 84.536 | 82.707 | 2.16 |
8 | 84.536 | 82.720 | 2.15 |
9 | 84.536 | 82.742 | 2.12 |
10 | 84.536 | 82.745 | 2.12 |
11 | 84.536 | 82.771 | 2.09 |
12 | 84.537 | 82.804 | 2.05 |
13 | 150.280 | 149.580 | 0.47 |
14 | 150.280 | 149.600 | 0.45 |
15 | 150.380 | 149.690 | 0.46 |
16 | 150.420 | 149.730 | 0.46 |
17 | 150.420 | 149.730 | 0.46 |
18 | 150.420 | 149.750 | 0.45 |
19 | 189.540 | 189.500 | 0.02 |
20 | 189.540 | 189.500 | 0.02 |
21 | 190.050 | 190.010 | 0.02 |
22 | 190.290 | 190.250 | 0.02 |
23 | 190.290 | 190.250 | 0.02 |
24 | 190.590 | 190.560 | 0.02 |
阶数 | 实验结果/Hz | 仿真结果/Hz | 偏差 |
---|---|---|---|
1 | 24.000 | 24.811 | 3.38% |
2 | 24.000 | 24.811 | |
3 | 24.000 | 24.811 | |
4 | 24.000 | 24.812 | |
5 | 24.000 | 24.812 | |
6 | 24.000 | 24.812 | |
7 | 82.000 | 84.536 | 3.09% |
8 | 82.000 | 84.536 | |
9 | 82.000 | 84.536 | |
10 | 82.000 | 84.536 | |
11 | 82.000 | 84.536 | |
12 | 82.000 | 84.537 |
Table 4 Comparison between the experimental and numerical results of the dry-modal natural frequencies
阶数 | 实验结果/Hz | 仿真结果/Hz | 偏差 |
---|---|---|---|
1 | 24.000 | 24.811 | 3.38% |
2 | 24.000 | 24.811 | |
3 | 24.000 | 24.811 | |
4 | 24.000 | 24.812 | |
5 | 24.000 | 24.812 | |
6 | 24.000 | 24.812 | |
7 | 82.000 | 84.536 | 3.09% |
8 | 82.000 | 84.536 | |
9 | 82.000 | 84.536 | |
10 | 82.000 | 84.536 | |
11 | 82.000 | 84.536 | |
12 | 82.000 | 84.537 |
阶数 | 实验结果/Hz | 仿真结果/Hz | 偏差/% |
---|---|---|---|
1 | 23.750 | 24.210 | 1.94 |
2 | 23.750 | 24.211 | 1.94 |
3 | 23.750 | 24.218 | 1.97 |
4 | 23.750 | 24.232 | 2.03 |
5 | 23.750 | 24.244 | 2.08 |
6 | 23.750 | 24.253 | 2.12 |
7 | 78.750 | 82.707 | 5.02 |
8 | 78.750 | 82.720 | 5.04 |
9 | 78.750 | 82.742 | 5.07 |
10 | 78.750 | 82.745 | 5.07 |
11 | 78.750 | 82.771 | 5.11 |
12 | 78.750 | 82.804 | 5.15 |
Table 5 Comparison between the experimental and numerical results of the wet-modal natural frequencies
阶数 | 实验结果/Hz | 仿真结果/Hz | 偏差/% |
---|---|---|---|
1 | 23.750 | 24.210 | 1.94 |
2 | 23.750 | 24.211 | 1.94 |
3 | 23.750 | 24.218 | 1.97 |
4 | 23.750 | 24.232 | 2.03 |
5 | 23.750 | 24.244 | 2.08 |
6 | 23.750 | 24.253 | 2.12 |
7 | 78.750 | 82.707 | 5.02 |
8 | 78.750 | 82.720 | 5.04 |
9 | 78.750 | 82.742 | 5.07 |
10 | 78.750 | 82.745 | 5.07 |
11 | 78.750 | 82.771 | 5.11 |
12 | 78.750 | 82.804 | 5.15 |
阶数 | 频率/Hz | |||
---|---|---|---|---|
1 s-1 | 3 s-1 | 4 s-1 | 5 s-1 | |
1 | 24.758 | 22.584 | 18.971 | 11.073 |
2 | 24.762 | 22.604 | 19.157 | 11.745 |
3 | 24.765 | 22.625 | 19.167 | 11.917 |
4 | 24.767 | 22.651 | 19.239 | 12.079 |
5 | 24.767 | 22.714 | 19.325 | 12.296 |
6 | 24.770 | 22.766 | 19.531 | 12.453 |
7 | 84.324 | 78.317 | 69.234 | 52.678 |
8 | 84.332 | 78.367 | 69.486 | 53.441 |
9 | 84.335 | 78.367 | 69.522 | 53.457 |
10 | 84.340 | 78.435 | 69.578 | 53.684 |
11 | 84.342 | 78.547 | 69.750 | 53.973 |
12 | 84.350 | 78.671 | 70.154 | 54.516 |
Table 6 Natural frequencies of the shaft and impeller system at different rotational speeds
阶数 | 频率/Hz | |||
---|---|---|---|---|
1 s-1 | 3 s-1 | 4 s-1 | 5 s-1 | |
1 | 24.758 | 22.584 | 18.971 | 11.073 |
2 | 24.762 | 22.604 | 19.157 | 11.745 |
3 | 24.765 | 22.625 | 19.167 | 11.917 |
4 | 24.767 | 22.651 | 19.239 | 12.079 |
5 | 24.767 | 22.714 | 19.325 | 12.296 |
6 | 24.770 | 22.766 | 19.531 | 12.453 |
7 | 84.324 | 78.317 | 69.234 | 52.678 |
8 | 84.332 | 78.367 | 69.486 | 53.441 |
9 | 84.335 | 78.367 | 69.522 | 53.457 |
10 | 84.340 | 78.435 | 69.578 | 53.684 |
11 | 84.342 | 78.547 | 69.750 | 53.973 |
12 | 84.350 | 78.671 | 70.154 | 54.516 |
阶数 | 下降比例/% | |||
---|---|---|---|---|
1~2 s-1 | 2~3 s-1 | 3~4 s-1 | 4~5 s-1 | |
1 | 2.21 | 6.72 | 16.00 | 41.63 |
2 | 2.23 | 6.64 | 15.25 | 38.69 |
3 | 2.21 | 6.58 | 15.28 | 37.83 |
4 | 2.16 | 6.52 | 15.06 | 37.22 |
5 | 2.11 | 6.31 | 14.92 | 36.37 |
6 | 2.09 | 6.13 | 14.21 | 36.24 |
7 | 1.92 | 5.31 | 11.60 | 23.91 |
8 | 1.91 | 5.26 | 11.33 | 23.09 |
9 | 1.89 | 5.29 | 11.29 | 23.11 |
10 | 1.89 | 5.21 | 11.29 | 22.84 |
11 | 1.86 | 5.10 | 11.20 | 22.62 |
12 | 1.83 | 4.99 | 10.83 | 22.29 |
Table 7 The decrease ratios of natural frequencies with the increase of rotational speeds
阶数 | 下降比例/% | |||
---|---|---|---|---|
1~2 s-1 | 2~3 s-1 | 3~4 s-1 | 4~5 s-1 | |
1 | 2.21 | 6.72 | 16.00 | 41.63 |
2 | 2.23 | 6.64 | 15.25 | 38.69 |
3 | 2.21 | 6.58 | 15.28 | 37.83 |
4 | 2.16 | 6.52 | 15.06 | 37.22 |
5 | 2.11 | 6.31 | 14.92 | 36.37 |
6 | 2.09 | 6.13 | 14.21 | 36.24 |
7 | 1.92 | 5.31 | 11.60 | 23.91 |
8 | 1.91 | 5.26 | 11.33 | 23.09 |
9 | 1.89 | 5.29 | 11.29 | 23.11 |
10 | 1.89 | 5.21 | 11.29 | 22.84 |
11 | 1.86 | 5.10 | 11.20 | 22.62 |
12 | 1.83 | 4.99 | 10.83 | 22.29 |
阶数 | 固有频率/Hz | |||
---|---|---|---|---|
70% | 80% | 90% | 100% | |
1 | 24.481 | 25.422 | 26.481 | 28.588 |
2 | 24.481 | 25.424 | 26.488 | 28.595 |
3 | 24.520 | 25.428 | 26.490 | 28.600 |
4 | 24.523 | 25.436 | 26.492 | 28.607 |
5 | 24.548 | 25.442 | 26.500 | 28.615 |
6 | 24.566 | 25.444 | 26.505 | 28.641 |
7 | 83.283 | 84.854 | 86.220 | 86.570 |
8 | 83.357 | 84.855 | 86.231 | 86.594 |
9 | 83.430 | 84.880 | 86.232 | 86.599 |
10 | 83.437 | 84.884 | 86.232 | 86.602 |
11 | 83.512 | 84.897 | 86.236 | 86.605 |
12 | 83.514 | 84.906 | 86.237 | 86.640 |
Table 8 Natural frequencies of the shaft and impeller system for different glycerine solutions
阶数 | 固有频率/Hz | |||
---|---|---|---|---|
70% | 80% | 90% | 100% | |
1 | 24.481 | 25.422 | 26.481 | 28.588 |
2 | 24.481 | 25.424 | 26.488 | 28.595 |
3 | 24.520 | 25.428 | 26.490 | 28.600 |
4 | 24.523 | 25.436 | 26.492 | 28.607 |
5 | 24.548 | 25.442 | 26.500 | 28.615 |
6 | 24.566 | 25.444 | 26.505 | 28.641 |
7 | 83.283 | 84.854 | 86.220 | 86.570 |
8 | 83.357 | 84.855 | 86.231 | 86.594 |
9 | 83.430 | 84.880 | 86.232 | 86.599 |
10 | 83.437 | 84.884 | 86.232 | 86.602 |
11 | 83.512 | 84.897 | 86.236 | 86.605 |
12 | 83.514 | 84.906 | 86.237 | 86.640 |
阶数 | 固有频率的增加比例/% | |||
---|---|---|---|---|
0.001~0.023 Pa·s | 0.023~0.060 Pa·s | 0.060~0.219 Pa·s | 0.219~1.412 Pa·s | |
1 | 1.12 | 3.84 | 4.17 | 7.96 |
2 | 1.12 | 3.85 | 4.19 | 7.95 |
3 | 1.25 | 3.70 | 4.18 | 7.97 |
4 | 1.20 | 3.72 | 4.15 | 7.98 |
5 | 1.25 | 3.64 | 4.16 | 7.98 |
6 | 1.29 | 3.57 | 4.17 | 8.06 |
7 | 0.70 | 1.89 | 1.61 | 0.41 |
8 | 0.77 | 1.80 | 1.62 | 0.42 |
9 | 0.83 | 1.74 | 1.59 | 0.43 |
10 | 0.84 | 1.73 | 1.59 | 0.43 |
11 | 0.90 | 1.66 | 1.58 | 0.43 |
12 | 0.86 | 1.67 | 1.57 | 0.47 |
Table 9 The decrease ratio of natural frequencies with the increase of rotational speeds
阶数 | 固有频率的增加比例/% | |||
---|---|---|---|---|
0.001~0.023 Pa·s | 0.023~0.060 Pa·s | 0.060~0.219 Pa·s | 0.219~1.412 Pa·s | |
1 | 1.12 | 3.84 | 4.17 | 7.96 |
2 | 1.12 | 3.85 | 4.19 | 7.95 |
3 | 1.25 | 3.70 | 4.18 | 7.97 |
4 | 1.20 | 3.72 | 4.15 | 7.98 |
5 | 1.25 | 3.64 | 4.16 | 7.98 |
6 | 1.29 | 3.57 | 4.17 | 8.06 |
7 | 0.70 | 1.89 | 1.61 | 0.41 |
8 | 0.77 | 1.80 | 1.62 | 0.42 |
9 | 0.83 | 1.74 | 1.59 | 0.43 |
10 | 0.84 | 1.73 | 1.59 | 0.43 |
11 | 0.90 | 1.66 | 1.58 | 0.43 |
12 | 0.86 | 1.67 | 1.57 | 0.47 |
1 | Nester R G. High-speed flexible-blade stirrer and stirrer seal for high-vacuum use[J]. Review of Scientific Instruments, 1956, 27(12): 1080-1081. |
2 | 刘作华, 曾启琴, 王运东, 等. 柔性桨强化高黏度流体混合的能效分析[J]. 化工学报, 2013, 64(10): 3620-3625. |
Liu Z H, Zeng Q Q, Wang Y D, et al. Energy efficiency analysis for high-viscosity fluid mixing enhanced by flexible impeller[J]. CIESC Journal, 2013, 64(10): 3620-3625. | |
3 | 刘作华, 曾启琴, 杨鲜艳, 等. 刚柔组合搅拌桨与刚性桨调控流场结构的对比[J]. 化工学报, 2014, 65(6): 2078-2084. |
Liu Z H, Zeng Q Q, Yang X Y, et al. Flow field structure with rigid-flexible impeller and rigid impeller[J]. CIESC Journal, 2014, 65(6): 2078-2084. | |
4 | 刘仁龙, 李爽, 刘作华, 等. 穿流-柔性组合桨强化搅拌槽中流体混沌混合特性[J]. 化工学报, 2015, 66(12): 4736-4742. |
Liu R L, Li S, Liu Z H, et al. Chaotic mixing enhanced by punched-flexible impeller in stirred vessel[J]. CIESC Journal, 2015, 66(12): 4736-4742. | |
5 | 赵婉丽. 柔性桨叶搅拌槽内流固耦合特性的研究[D]. 北京: 北京化工大学, 2017. |
Zhao W L. Study of fluid-structure interaction characteristics of flexible blade in a stirred tank[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
6 | Gu D Y, Liu Z H, Qiu F C, et al. Design of impeller blades for efficient homogeneity of solid-liquid suspension in a stirred tank reactor[J]. Advanced Powder Technology, 2017, 28(10): 2514-2523. |
7 | Gu D Y, Liu Z H, Li J, et al. Intensification of chaotic mixing in a stirred tank with a punched rigid-flexible impeller and a chaotic motor[J]. Chemical Engineering and Processing: Process Intensification, 2017, 122: 1-9. |
8 | 朱俊. 刚柔组合搅拌桨强化流体混沌混合行为研究[D]. 重庆: 重庆大学, 2017. |
Zhu J. Chaotic mixing performance of multiphase-fluid intensified by double rigid-flexible combination impeller[D]. Chongqing: Chongqing University, 2017. | |
9 | Qiu F C, Liu Z H, Liu R L, et al. Gas-liquid mixing performance, power consumption, and local void fraction distribution in stirred tank reactors with a rigid-flexile impeller[J]. Experimental Thermal and Fluid Science, 2018, 97: 351-363. |
10 | 徐博航. 易形变桨叶搅拌槽内流场特性研究[D]. 北京: 北京化工大学, 2018. |
Xu B H. Flow field characteristics in a stirred vessel with flexible blades[D]. Beijing: Beijing University of Chemical Technology, 2018. | |
11 | Liang Y Y, Shi D E, Xu B H, et al. Turbulent flow field in a stirred vessel agitated by an impeller with flexible blades[J]. AIChE Journal, 2018, 64(11): 4148-4161. |
12 | 熊黠, 刘作华, 谷德银, 等. 刚柔组合桨强化粉煤灰酸浸搅拌槽内固液混沌混合[J]. 化工学报, 2019, 70(5): 1693-1701, 2026. |
Xiong X, Liu Z H, Gu D Y, et al. Chaotic mixing process of fly ash in acid leaching tank intensified by rigid-flexible impeller[J]. CIESC Journal, 2019, 70(5): 1693-1701, 2026. | |
13 | 刘作华, 魏红军, 熊黠, 等. 错位刚柔桨强化搅拌槽内流体混合实验及数值模拟[J]. 化工学报, 2020, 71(10): 4621-4631. |
Liu Z H, Wei H J, Xiong X, et al. Experiment and numerical simulation of chaotic mixing performance enhanced by perturbed rigid-flexible impeller in stirred tank[J]. CIESC Journal, 2020, 71(10): 4621-4631. | |
14 | Young R N, Ga A. Method and apparatus for aeration using flexible blade impeller: US5993158[P]. 1999-11-30. |
15 | Luke Bullock S, Schober S D, Hansen T L. Flexible agitator fins: D477697[P]. 2003-07-22. |
16 | Driss Z, Karray S, Kchaou H, et al. Computer simulations of fluid-structure interaction generated by a flat-blade paddle in a vessel tank[J]. International Review of Aerospace Engineering (IREASE), 2014, 7(3): 88. |
17 | Karray S, Driss Z, Kchaou H, et al. Numerical simulation of fluid-structure interaction in a stirred vessel equipped with an anchor impeller[J]. Journal of Mechanical Science and Technology, 2011, 25(7): 1749-1760. |
18 | Karray S, Driss Z, Kchaou H, et al. Hydromechanics characterization of the turbulent flow generated by anchor impellers[J]. Engineering Applications of Computational Fluid Mechanics, 2011, 5(3): 315-328. |
19 | Karray S, Driss Z, Kaffel A, et al. Fluid-structure interaction in a stirred vessel equipped with a Rushton turbine[J]. International Journal of Mechanics and Applications, 2012, 2(6): 129-139. |
20 | Berger T, Fischer M, Strohmeier K. Fluid-structure interaction of stirrers in mixing vessels[J]. Journal of Pressure Vessel Technology, 2003, 125(4): 440-445. |
21 | Berger T, Strohmeier K. Numerical simulation of stirrer oscillations in consideration of fluid-structure-interaction and flexible restraint systems[C]//Proceedings of ASME 2003 Pressure Vessels and Piping Conference. Cleveland, Ohio, USA,2008: 29-34. |
22 | Ghobadi N, Ogino C, Ogawa T, et al. Using a flexible shaft agitator to enhance the rheology of a complex fungal fermentation culture[J]. Bioprocess and Biosystems Engineering, 2016, 39(11): 1793-1801. |
23 | Ogawa T, Yamamoto M. Frictionless clean reactor “SWINGSTIR”[EB/OL].. |
24 | Staheli C C, Knudsen B M, Williams T G, et al. Fluid mixing system with flexible drive line and foldable impeller: US10272400[P]. 2019-04-30. |
25 | 杨锋苓, 张翠勋, 苏腾龙. 柔性Rushton搅拌桨的功耗与流场特性研究[J]. 化工学报, 2020, 71(2): 614-625. |
Yang F L, Zhang C X, Su T L. Power and flow characteristics of flexible-blade Rushton impeller[J]. CIESC Journal, 2020, 71(2): 614-625. | |
26 | 杨锋苓, 张翠勋, 李美婷. 柔性Rushton搅拌桨混合性能的实验研究[J]. 化工学报, 2020, 71(2): 626-632. |
Yang F L, Zhang C X, Li M T. Experimental study on mixing characteristics of flexible-blade Rushton impeller[J]. CIESC Journal, 2020, 71(2): 626-632. | |
27 | 张阿漫, 戴绍仕. 流固耦合动力学[M]. 北京: 国防工业出版社, 2011. |
Zhang A M, Dai S S. Fluid-Structure Interaction Dynamics[M]. Beijing: National Defense Industry Press, 2011. | |
28 | 徐自力, 艾松. 叶片结构强度与振动[M]. 西安: 西安交通大学出版社, 2018: 170-181. |
Xu Z L, Ai S. Blade Structure Strength and Vibration [M]. Xi'an: Xi'an Jiaotong University Press, 2018: 170-181. | |
29 | 戚振. 基于流固耦合的搅拌反应器机械特性研究[D]. 青岛: 山东科技大学, 2014. |
Qi Z. Research on the mechanical properties of the stirred reactor based on fluid-structure interaction[D]. Qingdao: Shandong University of Science and Technology, 2014. | |
30 | 张福荣. 基于CAD和有限元方法的齿轮模态分析[J]. 科技通报, 2013, 29(9): 93-97, 101. |
Zhang F R. The modal analysis of gear based on CAD & finite element[J]. Bulletin of Science and Technology, 2013, 29(9): 93-97, 101. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[3] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[4] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[7] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[8] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[9] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[10] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[11] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[12] | Kexin HUANG, Tong LI, Anqi LI, Mei LIN. Mode decomposition of flow field in T-junction with rotating impeller [J]. CIESC Journal, 2023, 74(7): 2848-2857. |
[13] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[14] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[15] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||