1 |
Silva M G, Oliveira G S, Carvalho J C R, et al. Esterification of oleic acid in a semi-batch bubble reactor for biodiesel production[J]. Brazilian Journal of Chemical Engineering, 2019, 36(1): 299-308.
|
2 |
Tang H Y, Liu J W, Zhang S, et al. A novel dual plugs gas blowing mode for efficient ladle metallurgy[J]. Ironmaking & Steelmaking, 2019, 46(5): 405-415.
|
3 |
Farrokhpay S, Filippova I, Filippov L, et al. Flotation of fine particles in the presence of combined microbubbles and conventional bubbles[J]. Minerals Engineering, 2020, 155: 106439.
|
4 |
Govardhan R N, Williamson C H K. Vortex-induced vibrations of a sphere[J]. Journal of Fluid Mechanics, 2005, 531: 11-47.
|
5 |
Zenit R, Magnaudet J. Measurements of the streamwise vorticity in the wake of an oscillating bubble[J]. International Journal of Multiphase Flow, 2009, 35(2): 195-203.
|
6 |
Rabha S S, Buwa V V. Volume-of-fluid (VOF) simulations of rise of single/multiple bubbles in sheared liquids[J]. Chemical Engineering Science, 2010, 65(1): 527-537.
|
7 |
Tchoufag J, Magnaudet J, Fabre D. Linear instability of the path of a freely rising spheroidal bubble[J]. Journal of Fluid Mechanics, 2014, 751: R4.
|
8 |
Zhang J, Ni M J. What happens to the vortex structures when the rising bubble transits from zigzag to spiral?[J]. Journal of Fluid Mechanics, 2017, 828: 353-373.
|
9 |
Gaudlitz D, Adams N A. Numerical investigation of rising bubble wake and shape variations[J]. Physics of Fluids, 2009, 21(12): 122102.
|
10 |
Kulkarni A A, Joshi J B. Bubble formation and bubble rise velocity in gas-liquid systems: a review[J]. Industrial & Engineering Chemistry Research, 2005, 44(16): 5873-5931.
|
11 |
Karamanev D G. Rise of gas bubbles in quiescent liquids[J]. AIChE Journal, 1994, 40(8): 1418-1421.
|
12 |
田震, 成有为, 王丽军, 等. 温度与压力对单孔气泡形成过程的影响[J]. 化工学报, 2019, 70(9): 3337-3345.
|
|
Tian Z, Cheng Y W, Wang L J, et al. Effect of temperature and pressure on formation process of single-hole bubbles[J]. CIESC Journal, 2019, 70(9): 3337-3345.
|
13 |
吴晅, 李晓瑞, 马骏, 等. 不同管口浸没方式下气泡生成行为特性[J]. 化工学报, 2019, 70(3): 901-912.
|
|
Wu X, Li X R, Ma J, et al. Behavior characteristics of bubble formation under various nozzle immersion modes[J]. CIESC Journal, 2019, 70(3): 901-912.
|
14 |
张海鹏, 林健峰, 郭春雨, 等. 不规则柱体绕流的数值研究[J]. 应用科技, 2017, 44(4): 1-4.
|
|
Zhang H P, Lin J F, Guo C Y, et al. Numerical study of flow around the irregular cylinder[J]. Applied Science and Technology, 2017, 44(4): 1-4.
|
15 |
谢潇潇, 及春宁, Williams John. 低雷诺数下不同顶角三棱柱体绕流受力和尾涡脱落机制[J]. 水电能源科学, 2018, 36(6): 73-76.
|
|
Xie X X, Ji C N, Williams J. Hydrodynamic forces and vortex-shedding mechanism of low-Re flow around triangular prism with different apex angles[J]. Water Resources and Power, 2018, 36(6): 73-76.
|
16 |
de Vries A W G, Biesheuvel A, van Wijngaarden L. Notes on the path and wake of a gas bubble rising in pure water[J]. International Journal of Multiphase Flow, 2002, 28(11): 1823-1835.
|
17 |
Brücker C. Structure and dynamics of the wake of bubbles and its relevance for bubble interaction[J]. Physics of Fluids, 1999, 11(7): 1781-1796.
|
18 |
庞明军, 费洋, 陈小洪, 等. 雷诺数和界面污染程度对气泡水动力学特性的影响[J]. 农业工程学报, 2019, 35(4): 99-105.
|
|
Pang M J, Fei Y, Chen X H, et al. Influence of Reynolds number and interfacial contamination degree on hydrodynamic characteristic of bubble[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(4): 99-105.
|
19 |
费洋, 庞明军. 球形气泡界面变化对尾涡性质和尺寸的影响[J]. 化工学报, 2017, 68(9): 3409-3419.
|
|
Fei Y, Pang M J. Influence of interface change for spherical bubble on vortex characteristic and size[J]. CIESC Journal, 2017, 68(9): 3409-3419.
|
20 |
Mougin G, Magnaudet J. Path instability of a rising bubble[J]. Physical Review Letters, 2002, 88(1): 014502.
|
21 |
Cano-Lozano J C, Bohorquez P, Martínez-Bazán C. Wake instability of a fixed axisymmetric bubble of realistic shape[J]. International Journal of Multiphase Flow, 2013, 51: 11-21.
|
22 |
倪明玖. 浮力作用下上升气泡的变形和驻涡形成机理研究[J]. 工程热物理学报, 2009, 30(1): 76-80.
|
|
Ni M J. Bubble rising driven by buoyancy with deformation and standing vortex[J]. Journal of Engineering Thermophysics, 2009, 30(1): 76-80.
|
23 |
Xu Y G, Ersson M, Jönsson P. Numerical simulation of single argon bubble rising in molten metal under a laminar flow[J]. Steel Research International, 2015, 86(11): 1289-1297.
|
24 |
Antepara O, Balcázar N, Rigola J, et al. Numerical study of rising bubbles with path instability using conservative level-set and adaptive mesh refinement[J]. Computers & Fluids, 2019, 187: 83-97.
|
25 |
Lee J, Park H. Wake structures behind an oscillating bubble rising close to a vertical wall[J]. International Journal of Multiphase Flow, 2017, 91: 225-242.
|
26 |
Tripathi M K, Sahu K C, Govindarajan R. Dynamics of an initially spherical bubble rising in quiescent liquid[J]. Nature Communications, 2015, 6: 6268.
|
27 |
Cano-Lozano J C, Martínez-Bazán C, Magnaudet J, et al. Paths and wakes of deformable nearly spheroidal rising bubbles close to the transition to path instability[J]. Physical Review Fluids, 2016, 1(5): 053604.
|
28 |
Magnaudet J, Eames I. The motion of high-Reynolds-number bubbles in inhomogeneous flows[J]. Annual Review of Fluid Mechanics, 2000, 32(1): 659-708.
|
29 |
Li X, Zhang P, Li J L, et al. Analysis of deformation and internal flow patterns for rising single bubbles in different liquids[J]. Chinese Journal of Chemical Engineering, 2019, 27(4): 745-758.
|
30 |
Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354.
|
31 |
马兆伟. 熔盐堆鼓泡气中气泡动力学研究[D]. 上海: 中国科学院上海应用物理研究所, 2019.
|
|
Ma Z W. Bubble dynamics study of bubble generator in molten salt reactor[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019.
|
32 |
Ern P, Fernandes P C, Risso F, et al. Evolution of wake structure and wake-induced loads along the path of freely rising axisymmetric bodies[J]. Physics of Fluids, 2007, 19(11): 113302.
|
33 |
Fernandes P C, Ern P, Risso F, et al. On the zigzag dynamics of freely moving axisymmetric bodies[J]. Physics of Fluids, 2005, 17(9): 098107.
|
34 |
甘恒. 微涡旋对尾矿絮凝沉降的影响探究[D]. 南宁: 广西大学, 2018.
|
|
Gan H. Influence of micro-vortex on the flocculation settlement of minerals[D]. Nanning: Guangxi University, 2018.
|
35 |
Wang S, Liu L, Zhang S B, et al. Stability analysis of the onset of vortex shedding for wakes behind flat plates[J]. Theoretical and Computational Fluid Dynamics, 2018, 32(4): 411-423.
|