CIESC Journal ›› 2021, Vol. 72 ›› Issue (5): 2727-2734.DOI: 10.11949/0438-1157.20201233
• Process system engineering • Previous Articles Next Articles
YAO Yuanchao(),QIU Peng,XU Jianliang,DAI Zhenghua(),LIU Haifeng
Received:
2020-08-27
Revised:
2020-10-28
Online:
2021-05-05
Published:
2021-05-05
Contact:
DAI Zhenghua
通讯作者:
代正华
作者简介:
姚源朝(1995—),男,硕士研究生,基金资助:
CLC Number:
YAO Yuanchao, QIU Peng, XU Jianliang, DAI Zhenghua, LIU Haifeng. Modeling of entrained-bed gasifier based on hybrid model[J]. CIESC Journal, 2021, 72(5): 2727-2734.
姚源朝, 仇鹏, 许建良, 代正华, 刘海峰. 基于混合模型的气流床气化炉建模[J]. 化工学报, 2021, 72(5): 2727-2734.
Add to citation manager EndNote|Ris|BibTeX
煤样 | 工业分析/%(质量分数,干基) | 元素分析/%(质量分数,干基) | |||||||
---|---|---|---|---|---|---|---|---|---|
FC | VM | ASH | FT(K) | C | H | O | N | S | |
1号 | 59.01 | 33.5 | 7.49 | 1469.15 | 75.88 | 4.42 | 10.69 | 0.96 | 0.56 |
2号 | 57.74 | 33.41 | 8.85 | 1447.15 | 75.93 | 4.24 | 9.90 | 0.88 | 0.20 |
Table1 Coal quality analysis data of coal
煤样 | 工业分析/%(质量分数,干基) | 元素分析/%(质量分数,干基) | |||||||
---|---|---|---|---|---|---|---|---|---|
FC | VM | ASH | FT(K) | C | H | O | N | S | |
1号 | 59.01 | 33.5 | 7.49 | 1469.15 | 75.88 | 4.42 | 10.69 | 0.96 | 0.56 |
2号 | 57.74 | 33.41 | 8.85 | 1447.15 | 75.93 | 4.24 | 9.90 | 0.88 | 0.20 |
煤样 | 项目 | 干煤流量/(kg/h) | 氧气流量/(kg/m3) | 水流量/(kg/h) | T/K | CO/% | CO2/% | H2/% |
---|---|---|---|---|---|---|---|---|
1号 | 工厂数据 | 36808.33 | 35366.29 | 24672.10 | 1518.65 | 42.57 | 18.51 | 37.69 |
模拟结果 | 1488.85 | 42.73 | 19.83 | 36.74 | ||||
2号 | 工厂数据 | 51231.4 | 48540 | 33448.60 | 1515.2 | 49.83 | 14.73 | 34.9 |
模拟结果 | 1498.69 | 49.32 | 14.25 | 34.98 |
Table 2 Simulation results and plant datas
煤样 | 项目 | 干煤流量/(kg/h) | 氧气流量/(kg/m3) | 水流量/(kg/h) | T/K | CO/% | CO2/% | H2/% |
---|---|---|---|---|---|---|---|---|
1号 | 工厂数据 | 36808.33 | 35366.29 | 24672.10 | 1518.65 | 42.57 | 18.51 | 37.69 |
模拟结果 | 1488.85 | 42.73 | 19.83 | 36.74 | ||||
2号 | 工厂数据 | 51231.4 | 48540 | 33448.60 | 1515.2 | 49.83 | 14.73 | 34.9 |
模拟结果 | 1498.69 | 49.32 | 14.25 | 34.98 |
项目 | T/ K | CO/% | CO2/% | H2/% | |
---|---|---|---|---|---|
工厂数据 | 1518.65 | 42.57 | 18.51 | 37.69 | |
模拟结果 | 已训练 | 1517.98 | 42.70 | 18.45 | 37.63 |
未训练 | 1531.16 | 42.712 | 19.45 | 38.65 |
Table 3 Prediction results of GRNN model and plant data
项目 | T/ K | CO/% | CO2/% | H2/% | |
---|---|---|---|---|---|
工厂数据 | 1518.65 | 42.57 | 18.51 | 37.69 | |
模拟结果 | 已训练 | 1517.98 | 42.70 | 18.45 | 37.63 |
未训练 | 1531.16 | 42.712 | 19.45 | 38.65 |
序号 | 机理模型 | 混合模型 | GRNN模型 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T/K | CO/% | CO2/% | H2/% | T/K | CO/% | CO2/% | H2/% | T/K | CO/% | CO2/% | H2/% | |
1 | 1505.63 | 42.01 | 20.34 | 36.95 | 1513.42 | 42.22 | 19.19 | 37.84 | 1523.88 | 43.18 | 18.60 | 37.45 |
2 | 1513.4 | 42.71 | 19.69 | 36.91 | 1518.25 | 41.99 | 18.56 | 37.46 | 1518.74 | 42.70 | 18.40 | 37.72 |
3 | 1509.63 | 42.73 | 20.06 | 36.51 | 1517.14 | 42.98 | 19.74 | 36.83 | 1517.53 | 42.88 | 19.18 | 37.21 |
4 | 1593.26 | 42.50 | 20.85 | 35.94 | 1598.53 | 42.24 | 19.50 | 37.32 | 1512.43 | 42.41 | 18.42 | 38.14 |
Table 4 Prediction results of model with fixed coal type
序号 | 机理模型 | 混合模型 | GRNN模型 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T/K | CO/% | CO2/% | H2/% | T/K | CO/% | CO2/% | H2/% | T/K | CO/% | CO2/% | H2/% | |
1 | 1505.63 | 42.01 | 20.34 | 36.95 | 1513.42 | 42.22 | 19.19 | 37.84 | 1523.88 | 43.18 | 18.60 | 37.45 |
2 | 1513.4 | 42.71 | 19.69 | 36.91 | 1518.25 | 41.99 | 18.56 | 37.46 | 1518.74 | 42.70 | 18.40 | 37.72 |
3 | 1509.63 | 42.73 | 20.06 | 36.51 | 1517.14 | 42.98 | 19.74 | 36.83 | 1517.53 | 42.88 | 19.18 | 37.21 |
4 | 1593.26 | 42.50 | 20.85 | 35.94 | 1598.53 | 42.24 | 19.50 | 37.32 | 1512.43 | 42.41 | 18.42 | 38.14 |
序号 | 机理模型 | GRNN模型 | 混合模型 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T/K | CO/% | CO2/% | H2/% | T/K | CO/% | CO2/% | H2/% | T/K | CO/% | CO2/% | H2/% | |
1 | 1491.03 | 46.88 | 14.62 | 36.83 | 1515.24 | 42.87 | 15.02 | 35.11 | 1507.05 | 47.65 | 15.66 | 37.06 |
2 | 1493.36 | 47.99 | 14.26 | 36.19 | 1548.46 | 42.87 | 14.97 | 35.14 | 1513.78 | 47.80 | 15.44 | 38.33 |
3 | 1498.69 | 49.32 | 14.25 | 34.98 | 1548.07 | 42.65 | 14.99 | 35.11 | 1524.43 | 47.65 | 15.18 | 37.13 |
4 | 1504.01 | 49.61 | 14.74 | 34.24 | 1549.43 | 42.87 | 15.36 | 34.91 | 1530.58 | 47.90 | 15.56 | 37.65 |
Table 5 Prediction results of the model under the change of coal type
序号 | 机理模型 | GRNN模型 | 混合模型 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T/K | CO/% | CO2/% | H2/% | T/K | CO/% | CO2/% | H2/% | T/K | CO/% | CO2/% | H2/% | |
1 | 1491.03 | 46.88 | 14.62 | 36.83 | 1515.24 | 42.87 | 15.02 | 35.11 | 1507.05 | 47.65 | 15.66 | 37.06 |
2 | 1493.36 | 47.99 | 14.26 | 36.19 | 1548.46 | 42.87 | 14.97 | 35.14 | 1513.78 | 47.80 | 15.44 | 38.33 |
3 | 1498.69 | 49.32 | 14.25 | 34.98 | 1548.07 | 42.65 | 14.99 | 35.11 | 1524.43 | 47.65 | 15.18 | 37.13 |
4 | 1504.01 | 49.61 | 14.74 | 34.24 | 1549.43 | 42.87 | 15.36 | 34.91 | 1530.58 | 47.90 | 15.56 | 37.65 |
1 | 梁咏诗, 赵香龙, 秦强, 等. 气流床气化炉的CPFD数值模拟[J]. 化工学报, 2019, 70(9): 3291-3299. |
Liang Y S, Zhao X L, Qin Q, et al. CPFD simulation on entrained-flow gasifier[J]. CIESC Journal, 2019, 70(9): 3291-3299. | |
2 | 张进春. 气流床煤气化工艺性能稳健优化与控制研究[D]. 长沙: 中南大学, 2011. |
Zhang J C. Study on robust optimization and control of the performance of entrained flow coal gasification[D]. Changsha: Central South University, 2011. | |
3 | 林慧丽. 单喷嘴粉煤气流床气化炉的稳态与动态模拟[D]. 上海: 华东理工大学, 2012. |
Lin H L. Steady and dynamic simulation of the single nozzle pulverized coal gasifier of entrained-flow[D]. Shanghai: East China University of Science and Technology, 2012. | |
4 | Sun Z H, Dai Z H, Zhou Z J, et al. Numerical simulation of industrial opposed multiburner coal-water slurry entrained flow gasifier[J]. Industrial & Engineering Chemistry Research, 2012, 51(6): 2560-2569. |
5 | Jeong H J, Seo D K, Hwang J. CFD modeling for coal size effect on coal gasification in a two-stage commercial entrained-bed gasifier with an improved char gasification model[J]. Applied Energy, 2014, 123: 29-36. |
6 | Dai Z H, Gong X, Guo X L, et al. Pilot-trial and modeling of a new type of pressurized entrained-flow pulverized coal gasification technology[J]. Fuel, 2008, 87(10/11): 2304-2313. |
7 | Watanabe H, Kurose R. Modeling and simulation of coal gasification on an entrained flow coal gasifier[J]. Advanced Powder Technology, 2020, 31(7): 2733-2741. |
8 | 杨俊宇. 多喷嘴对置式水煤浆气化系统动态模拟[D]. 上海: 华东理工大学, 2015. |
Yang J Y. Dynamic simulation of opposed multi-burner coal-water slurry gasification system[D]. Shanghai: East China University of Science and Technology, 2015. | |
9 | 李卓. 混合建模方法研究及其在化学化工过程中的应用[D]. 杭州: 浙江工业大学, 2019. |
Li Z. Study of hybrid modeling method and its application in chemical and engineering processes[D]. Hangzhou: Zhejiang University of Technology, 2019. | |
10 | 赵锦超, 龚欣, 代正华, 等. 用BP神经网络对气流床粉煤气化炉的预测[J]. 华东理工大学学报(自然科学版), 2009, 35(5): 688-692. |
Zhao J C, Gong X, Dai Z H, et al. Prediction of entrained-flow pulverized coal gasifier based on BP neural networks[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2009, 35(5): 688-692. | |
11 | Chen Y F, Shen L G, Li R J, et al. Quantification of interfacial energies associated with membrane fouling in a membrane bioreactor by using BP and GRNN artificial neural networks[J]. Journal of Colloid and Interface Science, 2020, 565: 1-10. |
12 | 李向阳, 朱学峰, 刘焕彬. 工业过程混合建模方法研究及应用[J]. 计算机工程与应用, 2001, 37(6): 17-19. |
Li X Y, Zhu X F, Liu H B. Research and application of hybrid modeling method in industrial process[J]. Computer Engineering and Applications, 2001, 37(6): 17-19. | |
13 | 李晓光. 混合建模方法研究及其在化工过程中的应用[D]. 北京: 北京化工大学, 2008. |
Li X G. Research and application on hybrid modeling approach for chemical processes[D]. Beijing: Beijing University of Chemical Technology, 2008. | |
14 | 刘丽颖, 李悦, 方鲁杰, 等. 基于Adaboost混合模型的乙烯裂解结焦量软测量[J]. 自动化与仪器仪表, 2015, (6): 50-53. |
Liu L Y, Li Y, Fang L J, et al. Soft measurement of ethylene cracking coke content based on Adaboost model[J]. Automation & Instrumentation, 2015, (6): 50-53. | |
15 | 王惠杰, 苑国庆, 张晓博, 等. 基于混合模型的燃气轮机负荷与排气温度关系的研究[J]. 汽轮机技术, 2015, 57(5): 344-346, 332. |
Wang H J, Yuan G Q, Zhang X B, et al. Research on relationship between load and exhaust temperature of gas turbine based on mixed model[J]. Turbine Technology, 2015, 57(5): 344-346, 332. | |
16 | 郭晶晶, 徐金金, 杜文莉, 等. 自适应迭代混合建模及在碳二加氢过程的应用[J]. 化工学报, 2018, 69(11): 4814-4822. |
Guo J J, Xu J J, Du W L, et al. Self-adaptive iterative hybrid modeling and its application in acetylene hydrogenation process[J]. CIESC Journal, 2018, 69(11): 4814-4822. | |
17 | 叶贞成, 周换兰, 饶德宝. 乙炔加氢反应过程混合建模与优化[J]. 化工学报, 2019, 70(2): 496-507. |
Ye Z C, Zhou H L, Rao D B. Hybrid modeling and optimization of acetylene hydrogenation process[J]. CIESC Journal, 2019, 70(2): 496-507. | |
18 | Ni Q Z, Williams A. A simulation study on the performance of an entrained-flow coal gasifier[J]. Fuel, 1995, 74(1): 102-110. |
19 | Merrick D. Mathematical models of the thermal decomposition of coal(3): Density, porosity and contraction behaviour[J]. Fuel, 1983, 62(5): 547-552. |
20 | Wen C Y, Chaung T Z. Entrainment coal gasification modeling[J]. Industrial & Engineering Chemistry Process Design and Development, 1979, 18(4): 684-695. |
21 | Niu D X, Wang H C, Chen H Y, et al. The general regression neural network based on the fruit fly optimization algorithm and the data inconsistency rate for transmission line icing prediction[J]. Energies, 2017, 10(12): 2066. |
22 | 江帆, 刘辉, 王彬, 等. 基于CNN-GRNN模型的图像识别[J]. 计算机工程, 2017, 43(4): 257-262. |
Jiang F, Liu H, Wang B, et al. Image recognition based on CNN-GRNN model[J]. Computer Engineering, 2017, 43(4): 257-262. | |
23 | 李冬辉, 尹海燕, 郑博文. 基于MFOA-GRNN模型的年电力负荷预测[J]. 电网技术, 2018, 42(2): 585-590. |
Li D H, Yin H Y, Zheng B W. An annual load forecasting model based on generalized regression neural network with multi-swarm fruit fly optimization algorithm[J]. Power System Technology, 2018, 42(2): 585-590. | |
24 | 石卿志, 何俊仕. 基于GRNN模型的降水预测研究[J]. 南水北调与水利科技, 2015, 13(2): 241-244. |
Shi Q Z, He J S. Precipitation forecast based on GRNN model[J]. South-to-North Water Transfers and Water Science & Technology, 2015, 13(2): 241-244. | |
25 | Qi J X, Jiang G Z, Li G F, et al. Surface EMG hand gesture recognition system based on PCA and GRNN[J]. Neural Computing and Applications, 2020, 32(10): 6343-6351. |
26 | 杨振华, 苏维词, 赵卫权, 等. 基于GRNN模型的岩溶地区城市水生态足迹分析与预测[J]. 中国岩溶, 2016, 35(1): 36-42. |
Yang Z H, Su W C, Zhao W Q, et al. Analysis and forecast of water ecological footprint in Karst area based on GRNN model[J]. Carsologica Sinica, 2016, 35(1): 36-42. | |
27 | 王海军, 涂凯, 闫晓荣. 基于果蝇优化算法的GRNN模型在边坡稳定预测中的应用[J]. 水电能源科学, 2015, 33(1): 124-126, 144. |
Wang H J, Tu K, Yan X R. Application of general regression neural network to predict slope stability based on fruit fly optimization algorithm[J]. Water Resources and Power, 2015, 33(1): 124-126, 144. | |
28 | 王泽阳, 来兴平, 刘小明, 等. 综采面区段煤柱宽度预测GRNN模型构建与应用[J]. 西安科技大学学报, 2019, 39(2): 209-216. |
Wang Z Y, Lai X P, Liu X M, et al. Construction and application of the GRNN model of coal section pillar width prediction in fully mechanized face[J]. Journal of Xi'an University of Science and Technology, 2019, 39(2): 209-216. | |
29 | 饶运章, 袁博云, 吴卫强, 等. 基于GRNN模型的硫化矿石堆氧化自热温度预测[J]. 金属矿山, 2016, (6): 149-152. |
Rao Y Z, Yuan B Y, Wu W Q, et al. Prediction of oxidation and self-heating temperature of sulfide ore heap based on GRNN model[J]. Metal Mine, 2016, (6): 149-152. | |
30 | 杨召亮, 薛新华. 隧道围岩等级分类GRNN模型研究[J]. 西部探矿工程, 2018, 30(11): 161-162, 170. |
Yang Z L, Xue X H. Research on GRNN model of tunnel surrounding rock classification [J]. West-China Exploration Engineering, 2018, 30(11): 161-162, 170. | |
31 | 狄圣杰, 李晓敏, 魏樯. GRNN在边坡稳定预测分析中的应用[J]. 水利水电科技进展, 2011, 31(3): 80-83. |
Di S J, Li X M, Wei Q. Application of generalized regression neural network in prediction and analysis of slope stability[J]. Advances in Science and Technology of Water Resources, 2011, 31(3): 80-83. |
[1] | Zihao QI, Wenqi ZHONG, Xi CHEN, Guanwen ZHOU, Xiaoliang ZHAO, Meijing XIN, Yi CHEN, Yongchang ZHU. Research on dynamic characteristics of cement raw meal decomposition process based on hybrid modeling [J]. CIESC Journal, 2022, 73(5): 2039-2051. |
[2] | GUO Jingjing, XU Jinjin, DU Wenli, YE Zhencheng. Self-adaptive iterative hybrid modeling and its application in acetylene hydrogenation process [J]. CIESC Journal, 2018, 69(11): 4814-4822. |
[3] | LI Kun, HAN Ying, LI Shenming, WANG Tong. OS-ELM-based hybrid online modeling for motor load torque of beam pumping units [J]. CIESC Journal, 2017, 68(6): 2465-2472. |
[4] | ZHU Pengfei, XIA Luyue, PAN Haitian. Multi-model fusion modeling method based on improved Kalman filtering algorithm [J]. CIESC Journal, 2015, 66(4): 1388-1394. |
[5] | ZHENG Jinwu, ZHANG Yixiao, GENG Yanfeng. Prediction of differential pressure of slotted orifice for wet gas stratified flow [J]. CIESC Journal, 2013, 64(4): 1163-1169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||