[1] |
董世民, 李伟成, 赵晓芳, 等. 变频游梁式抽油系统动态仿真与实时频率优化[J]. 中国机械工程, 2016, 27(12): 1585-1590.
|
|
DONG S M, LI W C, ZHAO X F, et al. Frequency conversion beam pumping system dynamic simulation and real time frequency optimization[J]. China Mechanical Engineering, 2016, 27(12): 1585-1590.
|
[2] |
董世民, 李伟成, 侯田博文, 等. 变频游梁式抽油系统运行参数的优化设计与性能仿真[J]. 机械工程学报, 2016, 52(21): 63-70.
|
|
DONG S M, LI W C, HOU T B W, et al. Optimizing the running parameters of a variable frequency beam pumping system and simulating its dynamic behaviors[J]. Chinese Journal of Mechanical Engineering, 2016, 52(21): 63-70.
|
[3] |
王博, 赵海森, 李和明, 等. 用于模拟游梁式抽油机电动机动态负荷的测试系统设计及应用[J]. 中国电机工程学报, 2014, 34(21): 3488-3495.
|
|
WANG B, ZHAO H S, LI H M, et al. Design and applications of the testing system with dynamic load for beam pumping motor[J]. Proceedings of the CSEE, 2014, 34(21): 3488-3495.
|
[4] |
LUO W, WANG B, ZHAO H S, et al. Modeling and simulation of non-linear dynamic process of the induction motor system with fluctuating potential loads[J]. Science China Technological Sciences, 2014, 57(9): 1729-1737.
|
[5] |
CHU Y F, YOU F Q, WASSICK J M. Hybrid method integrating agent-based modeling and heuristic tree search for scheduling of complex batch processes[J]. Computers & Chemical Engineering, 2014, 60(2): 277-296.
|
[6] |
ZHANG J, MAO Z Z, JIA R D, et al. Real time optimization based on a serial hybrid model for gold cyanidation leaching process[J]. Minerals Engineering, 2015, 70(70): 250-263.
|
[7] |
ZHANG J, MAO Z, JIA R, et al. Serial hybrid modelling for a gold cyanidation leaching plant[J]. Canadian Journal of Chemical Engineering, 2015, 93(9): 1624-1634.
|
[8] |
TIAN Z D, LI S J, WANG Y H, et al. A multi-model fusion soft sensor modelling method and its application in rotary kiln calcination zone temperature prediction[J]. Transactions of the Institute of Measurement and Control, 2016, 38(1): 110-124.
|
[9] |
WANG J S, SHEN N N. Hybrid multiple soft-sensor models of grinding granularity based on Cuckoo searching algorithm and hysteresis switching strategy[J]. Scientific Programming, 2015, 2015(5): 1-11.
|
[10] |
TIAN Z D, LI S J, WANG Y H, et al. A Network traffic hybrid prediction model optimized by improved harmony search algorithm[J]. Neural Network World, 2015, 25(6): 669-685.
|
[11] |
WANG X, WANG Y, YANG C, et al. Hybrid modeling of an industrial grinding-classification process[J]. Powder Technology, 2015, 279(5): 75-85.
|
[12] |
TIAN Z D, WANG Y H, LI S J. T-S fuzzy neural network predictive control for burning zone temperature in rotary kiln with improved hierarchical genetic algorithm[J]. International Journal of Modelling, Identification and Control, 2016, 25(4): 323-334.
|
[13] |
HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501.
|
[14] |
王新迎, 韩敏. 多元混沌时间序列的多核极端学习机建模预测[J]. 物理学报, 2015, 64(7): 070504-1-7.
|
|
WANG X Y, HAN M. Multivariate chaotic time series prediction using multiple kernel extreme learning machine[J]. Acta Phys. Sin., 2015, 64(7): 070504-1-7.
|
[15] |
韩敏, 刘晓欣. 一种基于互信息变量选择的极端学习机算法[J]. 控制与决策, 2014, 29(9): 1576-1580.
|
|
HAN M, LIU X X. An extreme learning machine algorithm based on mutual information variable selection[J]. Control and Decision, 2014, 29(9): 1576-1580.
|
[16] |
HUANG G B, ZHOU H, DING X, et al. Extreme learning machine for regression and multiclass classification[J]. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 2012, 42(2): 513-529.
|
[17] |
LIANG N Y, HUANG G B, SARATCHANDRAN P, et al. A fast and accurate online sequential learning algorithm for feedforward networks[J]. IEEE Transactions on Neural networks, 2006, 17(6): 1411-1423.
|
[18] |
WANG B, HUANG S, QIU J, et al. Parallel online sequential extreme learning machine based on MapReduce[J]. Neurocomputing, 2015, 149: 224-232.
|
[19] |
HUANG S, WANG B, QIU J, et al. Parallel ensemble of online sequential extreme learning machine based on MapReduce[J]. Neurocomputing, 2016, 174: 352-367.
|
[20] |
UCAR A, DEMIR Y, GÜZELIS C. A new facial expression recognition based on curvelet transform and online sequential extreme learning machine initialized with spherical clustering[J]. Neural Computing and Applications, 2016, 27(1): 131-142.
|
[21] |
MIRZA B, LIN Z. Meta-cognitive online sequential extreme learning machine for imbalanced and concept-drifting data classification[J]. Neural Networks, 2016, 80: 79-94.
|
[22] |
GAO X H, WONG K I, WONG P K, et al. Adaptive control of rapidly time-varying discrete-time system using initial-training-free online extreme learning machine[J]. Neurocomputing, 2016, 194: 117-125.
|
[23] |
BUDIMAN A, FANANY M I, BASARUDDIN C. Adaptive online sequential ELM for concept drift tackling[J]. Computational Intelligence and Neuroscience, 2016, 2016: 8091267.
|
[24] |
YANG Z, ZHANG P, CHEN L. RFID-enabled indoor positioning method for a real-time manufacturing execution system using OS-ELM[J]. Neurocomputing, 2016, 174: 121-133.
|
[25] |
SOARES S G, ARAUJO R. An adaptive ensemble of on-line extreme learning machines with variable forgetting factor for dynamic system prediction[J]. Neurocomputing, 2016, 171: 693-707.
|
[26] |
李颖川. 采油工程[M]. 2版. 北京: 石油工业出版社, 2009: 43-155.
|
|
LI Y C. Oil Extraction Engineering[M]. 2nd ed. Beijing: Petroleum Industry Press, 2009: 43-155.
|
[27] |
汤蕴璆, 张奕黄, 范瑜. 交流电机动态分析[M]. 北京: 机械工业出版社, 2004: 33-65.
|
|
TANG Y Q, ZHANG Y H, FAN Y. Dynamic Analysis of AC Motor[M]. Beijing: China Machine Press, 2004: 33-65.
|
[28] |
郑海金, 邓吉彬. 能耗最低机采系统设计方法的研究及应用[J]. 石油学报, 2007, 28(2): 129-132.
|
|
ZHENG H J, DENG J B. Research and application on designing method of sucker-rod pumping system with the least energy consumption[J]. Acta Petrolei Sinica, 2007, 28(2): 129-132.
|
[29] |
姚春东. 提高抽油机井系统效率的计算机仿真分析[J]. 石油学报, 2005, 26(4): 106-110.
|
|
YAO C D. Computer simulation for enhancing system efficiency of rod pumping well[J]. Acta Petrolei Sinica, 2005, 26(4): 106-110.
|
[30] |
齐维贵, 朱学莉, 张延丽. 抽油机节能的模糊神经网络控制研究[J]. 中国电机工程学报, 2004, 24(6): 137-140.
|
|
QI W G, ZHU X L, ZHANG Y L. A study of fuzzy neural network control of energy-saving of oil pump[J]. Proceedings of the CSEE, 2004, 24(6): 137-140.
|