CIESC Journal ›› 2021, Vol. 72 ›› Issue (5): 2727-2734.DOI: 10.11949/0438-1157.20201233

• Process system engineering • Previous Articles     Next Articles

Modeling of entrained-bed gasifier based on hybrid model

YAO Yuanchao(),QIU Peng,XU Jianliang,DAI Zhenghua(),LIU Haifeng   

  1. Shanghai Coal Gasification Engineering Technology Research Center, College of Resources and Environment Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2020-08-27 Revised:2020-10-28 Online:2021-05-05 Published:2021-05-05
  • Contact: DAI Zhenghua

基于混合模型的气流床气化炉建模

姚源朝(),仇鹏,许建良,代正华(),刘海峰   

  1. 华东理工大学资源与环境工程学院,上海市煤气化工程技术研究中心,上海 200237
  • 通讯作者: 代正华
  • 作者简介:姚源朝(1995—),男,硕士研究生,alanyao_business@163.com
  • 基金资助:
    国家重点研发计划项目(2018YFC0808500);国家自然科学基金项目(21776087);上海市优秀技术带头人项目(19XD1434800)

Abstract:

In order to improve the prediction accuracy of the entrained-bed gasifier's outlet results under the conditions of coal type changes and process parameter fluctuations, a mechanism model, a generalized regression neural network (GRNN) model and a hybrid model are used to model the gasifier. The hybrid model constructed by GRNN model and mechanism model, combined with two different coal samples to analyze the prediction results of the three models. The results show that the three models can simulate the gasification process well. The prediction errors of the hybrid model regarding gasification temperature and the contents of CO, CO2 and H2 are 0.18% and 0.25%, 1.72% and 0.43% when the coal type is fixed. Compared with the mechanism model and the GRNN model, the error of hybrid model is smaller. When the coal type is changed, the prediction of the outlet gas result of the hybird model is the closest to the actual production data, and the error is 0.81% and 0.11%, 2.53% and 0.42% respectively. It is proved that the hybrid model can effectively simulate the gasification process under the conditions of coal type changes and process parameter fluctuations, which greatly improves the prediction accuracy of the mechanism model and the GRNN model.

Key words: entrained-bed gasifier, mechanism model, generalized regression neural network, hybrid model

摘要:

为了提高在煤质改变及工艺参数波动条件下气流床气化炉出口结果的预测精度,分别采用机理模型、广义回归神经网络(GRNN)模型以及混合模型对气化炉进行建模,其中混合模型由GRNN模型和机理模型构建,结合两种不同的煤样对三种模型的预测结果进行分析。结果表明:三种模型均可以较好地对气化过程进行模拟;其中在煤种固定的情况下混合模型关于气化温度和CO、CO2及H2含量的预测误差为0.18%和0.25%、1.72%及0.43%,与机理模型和GRNN模型相比误差更小;在煤种改变的情况下混合模型关于出口气体结果的预测最接近实际生产数据,误差为0.81%和0.11%、2.53%及0.42%。证明混合模型在煤种改变及工艺参数波动条件下可以有效地对气化过程进行模拟,在很大程度上提高了机理模型和GRNN模型的预测精度。

关键词: 气流床气化炉, 机理建模, 广义回归神经网络, 混合模型

CLC Number: