[1] |
CHEN L, HONTOIR Y, HUANG D, et al. Combining first principles with black-box techniques for reaction systems[J]. Control Engineering Practice, 2004, 12(7):819-826.
|
[2] |
YANG A, MARTIN E, MORRIS J. Identification of semi-parametric hybrid process models[J]. Computers & Chemical Engineering, 2011, 35(1):63-70.
|
[3] |
LUO N, DU W L, YE Z C, et al. Development of a hybrid model for industrial ethylene oxide reactor[J]. Industrial & Engineering Chemistry Research, 2012, 51(19):6926-6932.
|
[4] |
ZHONG W M, JIANG C, PENG X, et al. Online quality prediction of industrial terephthalic acid hydropurification process using modified regularized slow feature analysis[J] Industrial & Engineering Chemistry Research, 2018, 57(29):9604-9614.
|
[5] |
AZARPOUR A, ALWI S R W, ZAHEDI G, et al. Catalytic activity evaluation of industrial Pd/C catalyst via gray-box dynamic modeling and simulation of hydropurification reactor[J]. Applied Catalysis A General, 2015, 489:262-271.
|
[6] |
MUKUL A. Combining neural and conventional paradigms for modelling, prediction and control[J]. International Journal of Systems Science, 1997, 28(1):65-81.
|
[7] |
KUMAR B S, VENKATESWARLU C. Estimating biofilm reaction kinetics using hybrid mechanistic-neural network rate function model[J]. Bioresource Technology, 2012, 103(1):300-308.
|
[8] |
SU H T, BHAT N, MINDERMAN P A, et al. Integrating neural networks with first principles models for dynamic modeling[J]. IFAC Proceedings Volumes, 1992, 25(5):327-332.
|
[9] |
THOMPSON M L, KRAMER M A. Modeling chemical processes using prior knowledge and neural networks[J]. AIChE Journal, 1994, 40(8):1328-1340.
|
[10] |
OLIVEIRA R. Combining first principles modelling and artificial neural networks:a general framework[J]. Computers & Chemical Engineering, 2004, 28(5):755-766.
|
[11] |
SU H T, MCAVOY T J. Integration of multilayer perceptron networks and linear dynamic models[J]. Industrial & Engineering Chemistry Research, 1993, 26(2):137-40.
|
[12] |
STOSCH M V, RUI O, PERES J, et al. Hybrid semi-parametric modeling in process systems engineering:past, present and future[J]. Computers & Chemical Engineering, 2014, 60(2):86-101.
|
[13] |
AL-MUSAYLH M S, DEO R C, LI Y, et al. Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting[J]. Applied Energy, 2018, 217:422-439.
|
[14] |
张东平, 王功华. 乙炔加氢反应器的模拟与分析[J]. 石油化工, 2003, 32(5):414-418. ZHANG D P, WANG G H. Simulating and analysis of reactor for selective hydrogenation of acetylene[J]. Petrochemical Technology, 2003, 32(5):415-418.
|
[15] |
罗雄麟, 刘建新, 许锋, 等. 乙炔加氢反应器二维非均相机理动态建模及分析[J]. 化工学报, 2008, 59(6):1454-1461. LUO X L, LIU J X, XU F, et al. Heterogeneous, two-dimensional dynamic modeling and analysis of acetylene hydrogenation reactor[J]. Journal of Chemical Industry and Engineering, 2008, 59(6):1454-1461.
|
[16] |
田亮, 蒋达, 钱锋. 催化剂失活条件下的碳二加氢反应器模拟与优化[J]. 化工学报, 2012, 63(1):185-192. TIAN L, JIANG D, QIAN F. Simulation and optimization of acetylene converter with decreasing catalyst activity[J]. CIESC Journal, 2012, 63(1):185-192.
|
[17] |
AZIZI M, SHARAK A Z, MOUSAVI S A, et al. Study on the acetylene hydrogenation process for ethylene production:simulation, modification, and optimization[J]. Chemical Engineering Communications, 2013, 200(7):863-877.
|
[18] |
JIN Y, DATYE A K, RIGHTOR E, et al. The influence of catalyst restructuring on the selective hydrogenation of acetylene to ethylene[J]. Journal of Catalysis, 2001, 203(2):292-306.
|
[19] |
WU W, LI Y L, CHEN W S, et al. Kinetic studies and operating strategies for an industrial selective hydrogenation process[J]. Ind. Eng. Chem. Res., 2011, 50(3):1264-1271.
|
[20] |
BENAVIDEZ A D, BURTON P D, NOGALES J L, et al. Improved selectivity of carbon-supported palladium catalysts for the hydrogenation of acetylene in excess ethylene[J]. Applied Catalysis A General, 2014, 482(28):108-115.
|
[21] |
田亮, 蒋达, 钱锋. 钯金属催化剂上的乙炔工业选择性加氢反应动力学比较[J]. 计算机与应用化学, 2012, 29(9):1031-1035. TIAN L, JIANG D, QIAN F. Reaction kinetic comparsions for industrial selective hydrogenation of acetylene on palladium catalyst[J]. Computers and Applied Chemistry, 2012, 29(9):1031-1035.
|
[22] |
HUANG W, MCCORMICK J R, LOBO R F, et al. Selective hydrogenation of acetylene in the presence of ethylene on zeolite-supported bimetallic catalysts[J]. Journal of Catalysis, 2007, 246(1):40-51.
|
[23] |
HOUZVICKA J, PESTMAN R, PONEC V. The role of carbonaceous deposits and support impurities in the selective hydrogenation of ethyne[J]. Catalysis Letters, 2012, 445/446(1/2/3/4):351-358.
|
[24] |
张健, 黄邦印, 隋志军, 等. 碳二加氢失活Pd-Ag催化剂的表征[J]. 石油化工, 2017, 46(7):839-844. ZHANG J, HUANG B Y, SUI Z J, et al. The characterization of the deactivated C2 hydrogenation Pd-Ag/Al2O3 catalyst[J]. Petrochemical Technology, 2017, 46(7):839-844.
|
[25] |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors.[J]. Nature, 1986, 323(6088):399-421.
|
[26] |
GOODFELLOW I, BENGIO Y, COURVILLE A, et al. Deep Learning[M]. Cambridge:MIT Press, 2016:379-382.
|
[27] |
JAEGER H. Discovering multiscale dynamical features with hierarchical Echo State Networks[J]. Vtls Inc., 2007, 35(2):277-284.
|
[28] |
GRAVES A. Generating sequences with recurrent neural networks[J]. Computer Science, arXiv preprint arXiv:1308.0850, 2013.
|
[29] |
PASCANU R, GULCEHRE C, CHO K, et al. How to construct deep recurrent neural networks[J]. Computer Science, arXiv preprint arXiv:1312.6026, 2013.
|
[30] |
KINGMA D P, BA J. Adam:a method for stochastic optimization[J]. Computer Science, arXiv preprint arXiv:1412.6980, 2014.
|